Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Discov Today ; 29(5): 103943, 2024 May.
Article in English | MEDLINE | ID: mdl-38452922

ABSTRACT

The drug discovery and development process encompasses the interrogation of metabolites arising from the biotransformation of drugs. Here we look at why, when and how metabolites of small-molecule drugs are synthesised from the perspective of a specialist contract research organisation, with particular attention paid to projects for which regulatory oversight is relevant during this journey. To illustrate important aspects, we look at recent case studies, trends and learnings from our experience of making and identifying metabolites over the past ten years, along with with selected examples from the literature.


Subject(s)
Drug Discovery , Humans , Pharmaceutical Preparations/metabolism , Drug Discovery/methods , Biotransformation , Animals
2.
J Med Chem ; 66(1): 641-656, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36548390

ABSTRACT

Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.


Subject(s)
Huntington Disease , Positron-Emission Tomography , Animals , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Ligands , Positron-Emission Tomography/methods , Huntington Disease/diagnostic imaging , Huntington Disease/drug therapy , Brain/diagnostic imaging , Brain/metabolism
3.
J Med Chem ; 64(16): 12003-12021, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34351166

ABSTRACT

The expanded polyglutamine-containing mutant huntingtin (mHTT) protein is implicated in neuronal degeneration of medium spiny neurons in Huntington's disease (HD) for which multiple therapeutic approaches are currently being evaluated to eliminate or reduce mHTT. Development of effective and orthogonal biomarkers will ensure accurate assessment of the safety and efficacy of pharmacologic interventions. We have identified and optimized a class of ligands that bind to oligomerized/aggregated mHTT, which is a hallmark in the HD postmortem brain. These ligands are potentially useful imaging biomarkers for HD therapeutic development in both preclinical and clinical settings. We describe here the optimization of the benzo[4,5]imidazo[1,2-a]pyrimidine series that show selective binding to mHTT aggregates over Aß- and/or tau-aggregates associated with Alzheimer's disease pathology. Compound [11C]-2 was selected as a clinical candidate based on its high free fraction in the brain, specific binding in the HD mouse model, and rapid brain uptake/washout in nonhuman primate positron emission tomography imaging studies.


Subject(s)
Brain/diagnostic imaging , Heterocyclic Compounds, 3-Ring/chemistry , Huntingtin Protein/metabolism , Protein Aggregates/physiology , Pyridines/chemistry , Radiopharmaceuticals/chemistry , Alzheimer Disease , Animals , Biomarkers/metabolism , Brain/metabolism , Carbon Radioisotopes/chemistry , Female , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Macaca fascicularis , Male , Mice, Inbred C57BL , Molecular Structure , Positron-Emission Tomography , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Rats, Sprague-Dawley , Structure-Activity Relationship
4.
J Med Chem ; 63(15): 8608-8633, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32662649

ABSTRACT

Mutant huntingtin (mHTT) protein carrying the elongated N-terminal polyglutamine (polyQ) tract misfolds and forms protein aggregates characteristic of Huntington's disease (HD) pathology. A high-affinity ligand specific for mHTT aggregates could serve as a positron emission tomography (PET) imaging biomarker for HD therapeutic development and disease progression. To identify such compounds with binding affinity for polyQ aggregates, we embarked on systematic structural activity studies; lead optimization of aggregate-binding affinity, unbound fractions in brain, permeability, and low efflux culminated in the discovery of compound 1, which exhibited target engagement in autoradiography (ARG) studies in brain slices from HD mouse models and postmortem human HD samples. PET imaging studies with 11C-labeled 1 in both HD mice and WT nonhuman primates (NHPs) demonstrated that the right-hand-side labeled ligand [11C]-1R (CHDI-180R) is a suitable PET tracer for imaging of mHTT aggregates. [11C]-1R is now being advanced to human trials as a first-in-class HD PET radiotracer.


Subject(s)
Huntingtin Protein/analysis , Huntington Disease/diagnostic imaging , Positron-Emission Tomography/methods , Protein Aggregation, Pathological/diagnostic imaging , Animals , Disease Models, Animal , Dogs , Female , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Ligands , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred C57BL , Mutation , Peptides/genetics , Protein Aggregation, Pathological/genetics , Radiopharmaceuticals/analysis , Rats, Sprague-Dawley
5.
Org Biomol Chem ; 13(28): 7655-63, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26081012

ABSTRACT

Ring closing metathesis (RCM) reactions of α-methylene-ß-lactams are used to construct strained 11- and 12-membered macrocycles that mimic key structural elements of phyllostictine A. The highest yield and stereoselectivity was achieved making 12-membered macrocycle Z-19 with use of a p-methoxyphenyl group on the lactam nitrogen. Interestingly, substrate concentration had an important influence on the stereochemical course of the reaction. A simplified analogue produced using this approach displays phytotoxic activity against Chlamydomonas reinhardtii suggesting that the α-methylene-ß-lactam subunit is responsible, at least in part, for the herbicidal activity of phyllostictine A.


Subject(s)
Azabicyclo Compounds/chemistry , Azetidines/chemistry , Chlamydomonas reinhardtii/drug effects , Herbicides/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Chlamydomonas reinhardtii/growth & development , Cyclization , Dose-Response Relationship, Drug , Herbicides/chemical synthesis , Herbicides/chemistry , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/chemistry , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...