Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
PDA J Pharm Sci Technol ; 74(1): 41-48, 2020.
Article in English | MEDLINE | ID: mdl-31420502

ABSTRACT

Cleaning validation is the documented evidence that shows the effectiveness of cleaning procedures for the removal of product residues and other contaminants. The cleaning procedures must be validated and methods to determine trace amounts of drugs have to be considered with special attention. An ultra-high-performance liquid chromatography-ultraviolet (UHPLC-UV) method for the determination of mometasone furoate residues on stainless-steel surfaces was developed and validated in order to control a cleaning procedure. The chromatography separation was achieved on a Waters Acquity UPLC HSS T3 column (50 × 2.1 mm, 1.8 µm) at 40°C using acetonitrile and water (1:1, v/v) as the mobile phase at a flow rate of 0.5 mL/min. The injection volume was 2 µL, and the detection was performed at 254 nm. The swab and rinse procedures were optimized in order to obtain a recovery higher than 90% of mometasone furoate from stainless-steel surfaces, using ethanol as the extraction solvent. The method was validated in the range of 0.2-2.6 µg/mL and showed appropriate selectivity, limit of detection and quantification, linearity, precision, accuracy, and robustness. This method was found to be simple, fast, and sensitive for determination of mometasone furoate residues and, therefore, can be used for cleaning validation analysis.


Subject(s)
Equipment Contamination/prevention & control , Mometasone Furoate/analysis , Stainless Steel/analysis , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/standards , Ultraviolet Rays , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Reproducibility of Results
2.
Braz. J. Pharm. Sci. (Online) ; 56: e18162, 2020. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1089199

ABSTRACT

Resumo Amiodarone hydrochloride is one of the most important drugs used to treat arrhythmias. The USP monograph for amiodarone hydrochloride describes an HPLC method for the quantification of seven impurities, however, this method shows problems that result in unresolved peaks. Moreover, there is no monograph for tablets in this compendium. Thus, a stability indicating HPLC method was developed for the determination of amiodarone, its known impurities and degradation products in tablets. A detailed forced degradation study was performed submitting amiodarone API, tablets and placebo to different stress conditions: acid and alkaline hydrolysis, oxidation, metal ions, heat, humidity, and light. Amiodarone hydrochloride API was susceptible to degradation in all stress conditions. The tablets also showed degradation in all environments, except in acidic condition. The analytes separation and quantification were achieved on an Agilent Zorbax Eclipse XDB-C18 column (100 x 3.0 mm, 3.5 µm). The mobile phase was composed of 50 mM acetate buffer pH 5.5 (A) and a mixture of methanol-acetonitrile (3:4, v/v) (B) in gradient elution. The method was validated in the range of 350-650 µg/mL for assay and 10-24 µg/mL for impurities determination. Therefore, this method can be used both for stability studies and routine quality control analyses.

3.
J Pharm Biomed Anal ; 145: 248-254, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28668653

ABSTRACT

Malaria is the most common parasitic disease in humans. It is estimated that 3 billion people live under the risk of contracting this disease in the world. Chloroquine (CQ) is the drug of choice to treat cases of non-complicated malaria. Forced degradation studies are important to know the drug's potentials degradation products and to develop a stability indicating method. Thus, chloroquine active pharmaceutical ingredient (API), chloroquine tablets and placebo were submitted to a detailed forced degradation study, using several stressing agents. The results were used on the development of a stability indicating method, using high performance liquid chromatography. The method was validated showing selectivity, precision, accuracy, robustness and linearity in the range of 30-360µg/mL of chloroquine. Chloroquine API and tablets were susceptible to alkaline hydrolysis with NaOH 1mol/L, and to oxidation with H2O2 3.0%. Two degradation products were formed in oxidative test. Kinetics of chloroquine degradation in alkaline hydrolysis was performed for both API and tablets. The calculated decay constant (k1) was 0.223days-1 for API and 0.182days-1 for tablets, while the half-life (t1/2) was 3.1days for API and 3.8days for tablets. Chemical structures have been proposed for the two degradation products formed in the presence of H2O2, using an UHPLC-UV-MS/MS approach.


Subject(s)
Chromatography, High Pressure Liquid , Chloroquine , Drug Stability , Hydrogen Peroxide , Oxidation-Reduction , Reproducibility of Results , Tablets , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...