Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Plant Sci ; 23(1): 66-78, 2018 01.
Article in English | MEDLINE | ID: mdl-29056440

ABSTRACT

The INDETERMINATE DOMAIN (IDD) family of transcriptional regulators controls a diversity of processes in a variety of plant tissues and organs and at different stages of plant development. Several recent reports describe the genetic characterization of IDD family members, including those that are likely to regulate C4 kranz anatomy, with implications for the engineering of C4 traits into C3 crops. In this review we summarize the reported functions of IDD members in the regulation of metabolic sensing and leaf, root, seed, and inflorescence development. We also provide an IDD phylogeny for the grasses and suggest future directions and strategies to define the function of IDDs in C4 photosynthesis and other developmental processes.


Subject(s)
Plant Proteins/genetics , Plant Roots/genetics , Plant Shoots/genetics , Seeds/genetics , Flowers/genetics , Flowers/physiology , Germination , Multigene Family , Nitrogen/metabolism , Photosynthesis , Phylogeny , Plant Development/physiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Seeds/metabolism , Starch/genetics , Starch/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Front Plant Sci ; 7: 1781, 2016.
Article in English | MEDLINE | ID: mdl-27965689

ABSTRACT

Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.

3.
Front Plant Sci ; 5: 221, 2014.
Article in English | MEDLINE | ID: mdl-24904616

ABSTRACT

Agriculturally important grasses such as rice, maize, and sugarcane are evolutionarily distant from Arabidopsis, yet some components of the floral induction process are highly conserved. Flowering in sugarcane is an important factor that negatively affects cane yield and reduces sugar/ethanol production from this important perennial bioenergy crop. Comparative studies have facilitated the identification and characterization of putative orthologs of key flowering time genes in sugarcane, a complex polyploid plant whose genome has yet to be sequenced completely. Using this approach we identified phosphatidylethanolamine-binding protein (PEBP) gene family members in sugarcane that are similar to the archetypical FT and TFL1 genes of Arabidopsis that play an essential role in controlling the transition from vegetative to reproductive growth. Expression analysis of ScTFL1, which falls into the TFL1-clade of floral repressors, showed transcripts in developing leaves surrounding the shoot apex but not at the apex itself. ScFT1 was detected in immature leaves and apical regions of vegetatively growing plants and, after the floral transition, expression also occurred in mature leaves. Ectopic over-expression of ScTFL1 in Arabidopsis caused delayed flowering in Arabidopsis, as might be expected for a gene related to TFL1. In addition, lines with the latest flowering phenotype exhibited aerial rosette formation. Unexpectedly, over-expression of ScFT1, which has greatest similarity to the florigen-encoding FT, also caused a delay in flowering. This preliminary analysis of divergent sugarcane FT and TFL1 gene family members from Saccharum spp. suggests that their expression patterns and roles in the floral transition has diverged from the predicted role of similar PEBP family members.

4.
J Pharm Biomed Anal ; 54(3): 451-7, 2011 Feb 20.
Article in English | MEDLINE | ID: mdl-20943341

ABSTRACT

A robust, direct, rapid and non-destructive X-ray diffraction crystallography method to detect the polyprenylated benzophenones 7-epi-clusianone (1) and guttiferone A (2) in extracts from Garcinia brasiliensis is presented. Powder samples of benzophenones 1 and 2, dried hexane extracts from G. brasiliensis seeds and fruit's pericarp, and the dried ethanolic extract from G. brasiliensis seeds were unambiguously characterized by powder X-ray diffractometry. The calculated X-ray diffraction peaks from crystal structures of analytes 1 and 2, previously determined by single-crystal X-ray diffraction technique, were overlaid to those of the experimental powder diffractograms, providing a practical identification of these compounds in the analyzed material and confirming the pure contents of the powder samples. Using the X-ray diffraction crystallography method, the studied polyprenylated benzophenones were selectively and simultaneously detected in the extracts which were mounted directly on sample holder. In addition, reference materials of the analytes were not required for analyses since the crystal structures of the compounds are known. High performance liquid chromatography analyses also were comparatively carried out to quantify the analytes in the same plant extracts showing to be in agreement with X-ray diffraction crystallography method.


Subject(s)
Benzophenones/analysis , Crystallography, X-Ray , Fruit/chemistry , Garcinia/chemistry , Phytotherapy , Plant Extracts/analysis , Seeds/chemistry , X-Ray Diffraction , Benzophenones/chemistry , Benzoquinones , Bridged Bicyclo Compounds/analysis , Bridged Bicyclo Compounds/chemistry , Chromatography, High Pressure Liquid , Humans , Plant Extracts/chemistry , Powders/analysis
5.
Acta Crystallogr C ; 65(Pt 3): o97-9, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19265231

ABSTRACT

The title compound [systematic name: 3beta-lup-20(29)-en-3-ol], C(30)H(50)O, was isolated from the leaves of Garcinia brasiliensis (common name: bacupari; a member of the Guttiferae family) and has been shown to have many useful medicinal and biological properties. The lupeol molecule consists of four six-membered rings (adopting chair conformations) and one five-membered ring (with an envelope conformation), all fused in trans fashion. Lupeol is isomorphic with the pentacyclic triterpene 3beta,30-dihydroxylup-20(29)-ene, which differs from lupeol due to the presence of an additional hydroxy group. The crystal packing is stabilized by van der Waals interactions and intermolecular O-H...O hydrogen bonds, giving rise to an infinite helical chain along the c axis.


Subject(s)
Triterpenes/chemistry , Crystallography, X-Ray , Garcinia/chemistry , Molecular Structure , Pentacyclic Triterpenes
SELECTION OF CITATIONS
SEARCH DETAIL
...