Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 93(3): 337-350, 2019 03.
Article in English | MEDLINE | ID: mdl-30362274

ABSTRACT

Chagas disease is caused by infection with the parasite protozoan Trypanosoma cruzi and affects about 8 million people in 21 countries in Latin America. The main form of treatment of this disease is still based on the use of two drugs, benznidazole and nifurtimox, which both present low cure rates in the chronic phase and often have serious side-effects. Herein, we describe the synthesis of tricyclic coumarins that were obtained via NHC organocatalysis and evaluation of their trypanocidal activity. Molecular docking studies against trypanosomal enzyme triosephosphate isomerase (TIM) were carried out, as well as a theoretical study of the physicochemical parameters. The tricyclic coumarins were tested in vitro against the intracellular forms of Trypanosoma cruzi. Among the 18 compounds tested, 10 were more active than the reference drug benznidazole. The trypanocidal activity of the lead compound was rationalized by molecular docking study which suggested the strong interaction with the enzyme TIM by T. cruzi and therefore indicating a possible mode of action. Furthermore, the selectivity index of eight tricyclic coumarins with high anti-T. cruzi activity was above 50 and thus showing that these lead compounds are viable candidates for further in vivo assays.


Subject(s)
Coumarins/chemistry , Drug Design , Trypanocidal Agents/chemical synthesis , Binding Sites , Catalytic Domain , Coumarins/metabolism , Coumarins/pharmacology , Humans , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Structure-Activity Relationship , Thermodynamics , Triose-Phosphate Isomerase/antagonists & inhibitors , Triose-Phosphate Isomerase/metabolism , Trypanocidal Agents/metabolism , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects
2.
Molecules ; 21(10)2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27735872

ABSTRACT

A series of novel xylitan derivatives derived from xylitol were synthesized using operationally simple procedures. A xylitan acetonide was the key intermediate used to prepare benzoate, arylsulfonate esters and 1,2,3-triazole derivatives of xylitan. These compounds were evaluated for their in vitro anti-Trypanosoma cruzi activity against trypomastigote and amastigote forms of the parasite in T. cruzi-infected cell lineages. Benznidazole was used as positive control against T. cruzi and cytotoxicity was determined in mammalian L929 cells. The arylsulfonate xylitan derivative bearing a nitro group displayed the best activity of all the compounds tested, and was slightly more potent than the reference drug benznidazole. The importance of the isopropylidene ketal moiety was established and the greater lipophilicity of these compounds suggests enhancement in cell penetration.


Subject(s)
Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Xylitol/chemical synthesis , Xylitol/pharmacology , Humans , Parasitic Sensitivity Tests , Trypanosoma cruzi/drug effects , Xylitol/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...