Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202406484, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647172

ABSTRACT

Alternating current (AC) and pulsed electrolysis are gaining traction in electro(organic) synthesis due to their advantageous characteristics. We employed AC electrolysis in electrochemically mediated Atom Transfer Radical Polymerization (eATRP) to facilitate the regeneration of the activator CuI complex on Cu0 electrodes. Additionally, Cu0 served as a slow supplemental activator and reducing agent (SARA ATRP), enabling the activation of alkyl halides and the regeneration of the CuI activator through a comproportionation reaction. We harnessed the distinct properties of Cu0 dual regeneration, both chemical and electrochemical, by employing sinusoidal, triangular, and square-wave AC electrolysis alongside some of the most active ATRP catalysts available. Compared to linear waveform (DC electrolysis) or SARA ATRP (without electrolysis), pulsed and AC electrolysis facilitated slightly faster and more controlled polymerizations of acrylates. The same AC electrolysis conditions could successfully polymerize eleven different monomers across different mediums, from water to bulk. Moreover, it proved effective across a spectrum of catalyst activity, from low-activity Cu/2,2-bipyridine to highly active Cu complexes with substituted tripodal amine ligands. Chain extension experiments confirmed the high chain-end fidelity of the produced polymers, yielding functional and high molecular-weight block copolymers. SEM analysis indicated the robustness of the Cu0 electrodes, sustaining at least 15 consecutive polymerizations.

2.
Polymers (Basel) ; 16(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38674998

ABSTRACT

Polymers generally form incompatible mixtures that make the process of recycling difficult, especially the mechanical recycling of mixed plastic waste. One of the most commonly used films in the packaging industry is multilayer films, mainly composed of polyethylene (PE) and polyamide (PA). Recycling these materials with such different molecular structures requires the use of compatibilizers to minimize phase separation and obtain more useful recycled materials. In this work, commercial polyisoprene-graft-maleic anhydride (PI-g-MA) was tested as a compatibilizer for a blend of PE and PA derived from the mechanical recycling of PE/PA multilayer films. Different amounts of PI-g-MA were tested, and the films made with 1.5% PI-g-MA showed the best results in terms of mechanical properties and dart impact. The films were also characterized thermally via thermogravimetric analysis (TG) and differential scanning calorimetry (DSC), using Fourier-transform infrared spectroscopy (FTIR), and morphologically using a scanning electron microscope (SEM). Other parameters, such as tearing and perforation, were analyzed.

3.
Macromol Biosci ; 24(2): e2300289, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37717210

ABSTRACT

The treatment of burn wounds remains a clinical challenge due to the need for repeated dressings changes. Therefore, the development of a dressing system that can be atraumatically removed from the wound bed can be considered a breakthrough and improve treatment times. In this work, the development of an injectable, fast-gelling hydrogel is proposed that can change its mechanical properties when exposed to visible light. The hydrogels are prepared by a "click" amino-yne reaction between poly(ethylene glycol) (PEG) functionalized with propiolic acid and the amino groups of poly(ethyleneimine) (PEI). The hydrogels exhibit a fast gelation time, which can be adjusted by changing the weight percentage and molecular weight of the precursors. They also exhibit good swelling ability and adhesion to living tissues. More importantly, their mechanical properties changed upon irradiation with green light. This loss of properties is achieved by a 1 O2 -mediated mechanism, as confirmed by the degradation of the ß-aminoacrylate linker. Moreover, the in vitro cell compatibility results of the hydrogels and their degradation products show good cytocompatibility. Therefore, it is believed that these hydrogels can be considered as materials with great potential for an innovative strategy for the treatment of burn wounds.


Subject(s)
Burns , Polyethyleneimine , Humans , Biocompatible Materials , Hydrogels/pharmacology , Polyethylene Glycols , Light , Burns/therapy
4.
Polymers (Basel) ; 15(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37896321

ABSTRACT

The addition of toxic flame retardants to commercially available polymers is often required for safety reasons due to the high flammability of these materials. In this work, the preparation and incorporation of efficient biodegradable starch-based flame retardants into a low-density polyethylene (LDPE) matrix was investigated. Thermoplastic starch was first obtained by plasticizing starch with glycerol/water or glycerol/water/choline phytate to obtain TPS-G and TPS-G-CPA, respectively. Various LDPE/TPS blends were prepared by means of melt blending using polyethylene graft maleic anhydride as a compatibilizer and by varying the content of TPS and a halogenated commercial flame retardant. By replacing 38% and 76% of the harmful commercial flame retardant with safe TPS-G-CPA and TPS-G, respectively, blends with promising fire behavior were obtained, while the limiting oxygen index (LOI ≈ 28%) remained the same. The presence of choline phytate improved both the charring ability and fire retardancy of starch and resulted in a 43% reduction in fire growth index compared to the blend with commercial flame retardant only, as confirmed by means of cone calorimetry. Standard UL 94 vertical tests showed that blends containing TPS exhibited dripping behavior (rated V2), while those with commercial flame retardant were rated V0. Overall, this work demonstrates the potential of starch as a natural flame retardant that could reduce the cost and increase the safety of polymer-based materials.

5.
Biomaterials ; 302: 122348, 2023 11.
Article in English | MEDLINE | ID: mdl-37866013

ABSTRACT

The hair follicle (HF) is a multicellular complex structure of the skin that contains a reservoir of multipotent stem cells. Traditional hair repair methods such as drug therapies, hair transplantation, and stem cell therapy have limitations. Advances in nanotechnology offer new approaches for HF regeneration, including controlled drug release and HF-specific targeting. Until recently, embryogenesis was thought to be the only mechanism for forming hair follicles. However, in recent years, the phenomenon of wound-induced hair neogenesis (WIHN) or de novo HF regeneration has gained attention as it can occur under certain conditions in wound beds. This review covers HF-specific targeting strategies, with particular emphasis on currently used nanotechnology-based strategies for both hair loss-related diseases and HF regeneration. HF regeneration is discussed in several modalities: modulation of the hair cycle, stimulation of progenitor cells and signaling pathways, tissue engineering, WIHN, and gene therapy. The HF has been identified as an ideal target for nanotechnology-based strategies for hair regeneration. However, some regulatory challenges may delay the development of HF regeneration nanotechnology based-strategies, which will be lastly discussed.


Subject(s)
Hair Follicle , Hair , Skin/metabolism , Tissue Engineering/methods , Regeneration/physiology
6.
Adv Healthc Mater ; 12(22): e2300918, 2023 09.
Article in English | MEDLINE | ID: mdl-37133868

ABSTRACT

Recently, highly stretchable and tough hydrogels that are photodegradable on-demand have been reported. Unfortunately, the preparation procedure is complex due to the hydrophobic nature of the photocrosslinkers. Herein, a simple method is reported to prepare photodegradable double-network (DN) hydrogels that exhibit high stretchability, toughness, and biocompatibility. Hydrophilic ortho-nitrobenzyl (ONB) crosslinkers incorporating different poly(ethylene glycol) (PEG) backbones (600, 1000, and 2000 g mol-1 ) are synthesized. These photodegradable DN hydrogels are prepared by the irreversible crosslinking of chains by using such ONB crosslinkers, and the reversible ionic crosslinking between sodium alginate and divalent cations (Ca2+ ). Remarkable mechanical properties are obtained by combining ionic and covalent crosslinking and their synergistic effect, and by reducing the length of the PEG backbone. The rapid on-demand degradation of these hydrogels is also demonstrated by using cytocompatible light wavelength (λ = 365 nm) that degrades the photosensitive ONB units. The authors have successfully used these hydrogels as skin-worn sensors for monitoring human respiration and physical activities. A combination of excellent mechanical properties, facile fabrication, and on-demand degradation holds promise for their application as the next generation of substrates or active sensors eco-friendly for bioelectronics, biosensors, wearable computing, and stretchable electronics.


Subject(s)
Hydrogels , Polyethylene Glycols , Humans , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Alginates/chemistry , Hydrophobic and Hydrophilic Interactions , Ions
7.
Polymers (Basel) ; 15(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242831

ABSTRACT

This study investigates the osteogenic differentiation of umbilical-cord-derived human mesenchymal stromal cells (hUC-MSCs) on biphasic calcium phosphate (BCP) scaffolds derived from cuttlefish bone doped with metal ions and coated with polymers. First, the in vitro cytocompatibility of the undoped and ion-doped (Sr2+, Mg2+ and/or Zn2+) BCP scaffolds was evaluated for 72 h using Live/Dead staining and viability assays. From these tests, the most promising composition was found to be the BCP scaffold doped with strontium (Sr2+), magnesium (Mg2+) and zinc (Zn2+) (BCP-6Sr2Mg2Zn). Then, samples from the BCP-6Sr2Mg2Zn were coated with poly(ԑ-caprolactone) (PCL) or poly(ester urea) (PEU). The results showed that hUC-MSCs can differentiate into osteoblasts, and hUC-MSCs seeded on the PEU-coated scaffolds proliferated well, adhered to the scaffold surfaces, and enhanced their differentiation capabilities without negative effects on cell proliferation under in vitro conditions. Overall, these results suggest that PEU-coated scaffolds are an alternative to PCL for use in bone regeneration, providing a suitable environment to maximally induce osteogenesis.

8.
Int J Pharm ; 637: 122865, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36940837

ABSTRACT

The chemosensitization of tumor cells by gene therapy represents a promising strategy for hepatocellular carcinoma (HCC) treatment. In this regard, HCC-specific and highly efficient gene delivery nanocarriers are urgently needed. For this purpose, novel lactobionic acid-based gene delivery nanosystems were developed to downregulate c-MYC expression and sensitize tumor cells to low concentration of sorafenib (SF). A library of tailor-made cationic glycopolymers, based on poly(2-aminoethyl methacrylate hydrochloride) (PAMA) and poly(2-lactobionamidoethyl methacrylate) (PLAMA) were synthesized by a straightforward activators regenerated by electron transfer atom transfer radical polymerization. The nanocarriers prepared with PAMA114-co-PLAMA20 glycopolymer were the most efficient for gene delivery. These glycoplexes specifically bound to the asialoglycoprotein receptor and were internalized through the clathrin-coated pit endocytic pathway. c-MYC expression was significantly downregulated by MYC short-hairpin RNA (MYC shRNA), resulting in efficient inhibition of tumor cells proliferation and a high levels apoptosis in 2D and 3D HCC-tumor models. Moreover, c-MYC silencing increased the sensitivity of HCC cells to SF (IC50 for MYC shRNA + SF 1.9 µM compared to 6.9 µM for control shRNA + SF). Overall, the data obtained demonstrated the great potential of PAMA114-co-PLAMA20/MYC shRNA nanosystems combined with low doses of SF for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Gene Expression Regulation, Neoplastic , Liver Neoplasms/metabolism , RNA, Small Interfering/genetics , Sorafenib
9.
Biomacromolecules ; 24(3): 1274-1286, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36780314

ABSTRACT

Cationic glycopolymers stand out as gene delivery nanosystems due to their inherent biocompatibility and high binding affinity to the asialoglycoprotein receptor (ASGPR), a target receptor overexpressed in hepatocellular carcinoma (HCC) cells. However, their synthesis procedure remains laborious and complex, with problems of solubilization and the need for protection/deprotection steps. Here, a mini-library of well-defined poly(2-aminoethyl methacrylate hydrochloride-co-poly(2-lactobionamidoethyl methacrylate) (PAMA-co-PLAMA) glycopolymers was synthesized by activators regenerated by electron transfer (ARGET) ATRP to develop an efficient gene delivery nanosystem. The glycoplexes generated had suitable physicochemical properties and showed high ASGPR specificity and high transfection efficiency. Moreover, the HSV-TK/GCV suicide gene therapy strategy, mediated by PAMA144-co-PLAMA19-based nanocarriers, resulted in high antitumor activity in 2D and 3D culture models of HCC, which was significantly enhanced by the combination with small amounts of docetaxel. Overall, our results demonstrated the potential of primary-amine polymethacrylate-containing-glycopolymers as HCC-targeted suicide gene delivery nanosystems and highlight the importance of combined strategies for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Docetaxel , Asialoglycoprotein Receptor/genetics , Cell Line, Tumor , Genetic Therapy
10.
Biomater Adv ; 145: 213267, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36599197

ABSTRACT

The use of gene-based products, such as DNA or RNA, is increasingly being explored for various innovative therapies. However, the success of these strategies is highly dependent on the effective delivery of these biomolecules to target cells. Therefore, the development of pH-responsive nanoparticles comprises the creation of intelligent delivery systems with high therapeutic efficiency. In this work, the pH-responsiveness of the poly(2-(diisopropylamino)ethyl methacrylate)) (PDPA) block was investigated for the encapsulation and delivery of small RNAs (sRNA) to cancer cells. The pH responsiveness was dependent on the protonation profile of the tertiary amines of PDPA, which directly affected the electrostatic interactions established with RNA. Thus, block copolymers based on poly(oligo(ethylene oxide) methyl ether methacrylate) (POEOMA) and PDPA, POEOMA-b-PDPA, were synthesized by supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP). The structure of the block copolymers was characterized by size exclusion chromatography and 1H NMR spectroscopy. The copolymers allowed effective complexation of model sRNAs and a pre-miRNA with efficiencies of about 89 % and 91 %, respectively. The characterization by dynamic light scattering revealed that these systems had sizes between 76 and 1375 nm. It was also found that the morphology of the polyplexes depended on the pH, since the preparation at a pH lower than the pKa of the copolymers resulted in spherical but polydisperse particles, while higher pH values resulted in nanoparticles with more homogeneous size, but altered morphology. Moreover, due to pH-responsiveness, it was achieved the release of RNA at pH higher than the pKa of the copolymers, while maintaining its integrity. The polyplexes also showed a high potential to protect RNA from RNases. The transfection of a lung cancer model (A549) and fibroblast cell lines showed that these polyplexes did not cause cell toxicity. In addition, the polyplexes enabled the effective transfection of the A549 cell line with pre-miRNA-29b and miRNA-29b, resulting in a decrease of expression levels of the target DNMT3B gene by approximately 51 % and 47 %, respectively. Overall, the POEOMA-b-PDPA copolymers proved to be a promising strategy for developing responsive delivery systems, that can play a critical role in some diseases, such as cancer, where pH varies between the intra and extracellular environments.


Subject(s)
MicroRNAs , Nanoparticles , Polymers , Methacrylates/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration
11.
Polymers (Basel) ; 14(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36433108

ABSTRACT

Electrochemically mediated atom transfer radical polymerization (eATRP) is developed in dispersion conditions to assist the preparation of cellulose-based films. Self-degassing conditions are achieved by the addition of sodium pyruvate (SP) as a ROS scavenger, while an aluminum counter electrode provides a simplified and more cost-effective electrochemical setup. Different polyacrylamides were grown on a model cellulose substrate which was previously esterified with 2-bromoisobutyrate (-BriB), serving as initiator groups. Small-scale polymerizations (15 mL) provided optimized conditions to pursue the scale-up up to 1000 mL (scale-up factor ~67). Cellulose-poly(N-isopropylacrylamide) was then chosen to prepare the tunable, thermoresponsive, solvent-free, and flexible films through a dissolution/regeneration method. The produced films were characterized by Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), dynamic scanning calorimetry (DSC), and thermogravimetric analysis (TGA).

12.
Chem Sci ; 13(20): 6008-6018, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35685801

ABSTRACT

In Atom Transfer Radical Polymerization (ATRP), Cu0 acts as a supplemental activator and reducing agent (SARA ATRP) by activating alkyl halides and (re)generating the CuI activator through a comproportionation reaction, respectively. Cu0 is also an unexplored, exciting metal that can act as a cathode in electrochemically mediated ATRP (eATRP). Contrary to conventional inert electrodes, a Cu cathode can trigger a dual catalyst regeneration, simultaneously driven by electrochemistry and comproportionation, if a free ligand is present in solution. The dual regeneration explored herein allowed for introducing the concept of pulsed galvanostatic electrolysis (PGE) in eATRP. During a PGE, the process alternates between a period of constant current electrolysis and a period with no applied current in which polymerization continues via SARA ATRP. The introduction of no electrolysis periods without compromising the overall polymerization rate and control is very attractive, if large current densities are needed. Moreover, it permits a drastic charge saving, which is of unique value for a future scale-up, as electrochemistry coupled to SARA ATRP saves energy, and shortens the equipment usage.

13.
Mater Today Bio ; 15: 100325, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35757031

ABSTRACT

We present for the first time highly stretchable and tough hydrogels with controlled light-triggered photodegradation. A double-network of alginate/polyacrylamide (PAAm) is formed by using covalently and ionically crosslinked subnetworks. The ionic Ca2+ alginate interpenetrates a PAAm network covalently crosslinked by a bifunctional acrylic crosslinker containing the photodegradable o-nitrobenzyl (ONB) core instead of the commonly used methylene bisacrylamide (MBAA). Remarkably, due to the developed protocol, the change of the crosslinker did not affect the hydrogel's mechanical properties. The incorporation of photosensitive components in hydrogels allows external temporal control of their properties and tuneable degradation. Cell viability and cell proliferation assays revealed that hydrogels and their photodegradation products are not cytotoxic to the NIH3T3 cell line. In one example of application, we used these hydrogels for bio-potential acquisition in wearable electrocardiography. Surprisingly, these hydrogels showed a lower skin-electrode impedance, compared to the common medical grade Ag/AgCl electrodes. This work lays the foundation for the next generation of tough and highly stretchable hydrogels that are environmentally friendly and can find applications in a variety of fields such as health, electronics, and energy, as they combine excellent mechanical properties with controlled degradation.

14.
Article in English | MEDLINE | ID: mdl-35637638

ABSTRACT

Nucleic acid-based therapies have changed the paradigm of cancer treatment, where conventional treatment modalities still have several limitations in terms of efficacy and severe side effects. However, these biomolecules have a short half-life in vivo, requiring multiple administrations, resulting in severe suffering, discomfort, and poor patient compliance. In the early days of (nano)biotechnology, these problems caused concern in the medical community, but recently it has been recognized that these challenges can be overcome by developing innovative formulations. This review focuses on the use of vinyl polymer-based materials for the protection and delivery of nucleic acids in cancer. First, an overview of the properties of nucleic acids and their versatility as drugs is provided. Then, key information on the achievements to date, the most effective delivery methods, and the evaluation of functionalization approaches (stimulatory strategies) are critically discussed to highlight the importance of vinyl polymers in the new cancer treatment approaches. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.


Subject(s)
Neoplasms , Nucleic Acids , Drug Delivery Systems , Humans , Nanomedicine , Nanotechnology/methods , Neoplasms/drug therapy , Nucleic Acids/therapeutic use , Polymers/chemistry , Vinyl Compounds
15.
Biomed Mater ; 17(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-35026736

ABSTRACT

Additive Manufacturing (AM) technologies are an effective route to fabricate tailor made scaffolds for tissue engineering (TE) and regenerative medicine, with microstereo-lithography (µSLA) being one of the most promising techniques to produce high quality 3D structures. Here, we report the crosslinking studies of fully biobased unsaturated polyesters (UPs) with 2-hydroxyethyl methacrylate (HEMA) as the unsaturated monomer (UM), using thermal and µSLA crosslinking processes. The resulting resins were fully characterized in terms of their thermal and mechanical properties. Determination of gel content, water contact angle, topography and morphology analysis by atomic force microscopy and scanning electron microscopy were also performed. The results show that the developed UP resins (UPRs) have promising properties for µSLA.In vitrocytotoxicity assays performed with 3T3-L1 cell lines showed that the untreated scaffolds exhibited a maximum cellular viability around 60%, which was attributed to the acidic nature of the UPRs. The treatment of the UPRs and scaffolds with ethanol (EtOH) improved the cellular viability to 100%. The data presented in this manuscript contribute to improve the performance of biobased UPs in AM.


Subject(s)
Methacrylates , Stereolithography , Tissue Scaffolds/chemistry , 3T3-L1 Cells , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , Cell Survival/drug effects , Cross-Linking Reagents , Methacrylates/chemistry , Methacrylates/toxicity , Mice , Tissue Engineering/methods
16.
Mater Sci Eng C Mater Biol Appl ; 131: 112498, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34857284

ABSTRACT

In this work, hydroxypropyl cellulose esters (HPCE) with long aliphatic chains were prepared and innovatively used in electrospinning to obtain hydroxypropyl cellulose (HPC)-based mats with enhanced resistance to moist environments. The described approach is very simple and does not require any post-treatment (e.g. cross-linking step) to overcome a major problem concerning the premature loss of properties of cellulose-based materials when in contact with moisture. HPCE-based electrospun mats were characterized in terms of their morphology, swelling ability and in vitro hydrolytic degradation. The mats exhibited a swelling capacity of over 115%, depending on the degree of substitution. The in vitro hydrolytic degradation tests showed the high structural integrity of the mats (< 5% weight loss) over a period of 30 days. The in vitro cytotoxicity tests showed that the mats of HPC esters are cytocompatible and promote the adhesion, proliferation and spreading of NIH3T3 fibroblast cells. These data suggest that the HPCE mats may be interesting materials for wound dressings, as well as for other tissue engineering applications.


Subject(s)
Nanofibers , Animals , Bandages , Cellulose/analogs & derivatives , Mice , NIH 3T3 Cells
17.
Mater Sci Eng C Mater Biol Appl ; 131: 112520, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34857299

ABSTRACT

Biocompatible hydrogels are exciting platforms that have stood out in recent years for their outstanding potential for biomedical applications. For these applications, the ability of the material to respond to an external stimulus can be a relevant addition. This responsiveness allows the material to modify its physical properties in such a way that it can deliver molecules that support the healing process or allow easy removal of the films from the tissue. Among the polymers used to produce these systems, polyurethane (PU) and polyurethane-urea (PUU) are some of the most cited examples. In this work, a new hydrogel-sensitive PUU film is proposed. These films are prepared from polyethylene glycol (PEG) and contain a ROS-responsive telechelic ß-aminoacrylate bond. The hydrogel films showed interesting mechanical and thermal properties, good water uptake and low cytotoxicity, which makes them suitable for biomedical applications. More importantly, the hydrogel films exhibited a light-degradable profile through an innovative ROS-mediated cleavage process, as indicated by the loss of mechanical properties.


Subject(s)
Hydrogels , Urea , Methylgalactosides , Polyethylene Glycols
18.
Polymers (Basel) ; 13(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34960929

ABSTRACT

The present study deals with the development of multifunctional biphasic calcium phosphate (BCP) scaffolds coated with biopolymers-poly(ε-caprolactone) (PCL) or poly(ester urea) (PEU)-loaded with an antibiotic drug, Rifampicin (RFP). The amounts of RFP incorporated into the PCL and PEU-coated scaffolds were 0.55 ± 0.04 and 0.45 ± 0.02 wt%, respectively. The in vitro drug release profiles in phosphate buffered saline over 6 days were characterized by a burst release within the first 8h, followed by a sustained release. The Korsmeyer-Peppas model showed that RFP release was controlled by polymer-specific non-Fickian diffusion. A faster burst release (67.33 ± 1.48%) was observed for the PCL-coated samples, in comparison to that measured (47.23 ± 0.31%) for the PEU-coated samples. The growth inhibitory activity against Escherichia coli and Staphylococcus aureus was evaluated. Although the RFP-loaded scaffolds were effective in reducing bacterial growth for both strains, their effectiveness depends on the particular bacterial strain, as well as on the type of polymer coating, since it rules the drug release behavior. The low antibacterial activity demonstrated by the BCP-PEU-RFP scaffold against E. coli could be a consequence of the lower amount of RFP that is released from this scaffold, when compared with BCP-PCL-RFP. In vitro studies showed excellent cytocompatibility, adherence, and proliferation of human mesenchymal stem cells on the BCP-PEU-RFP scaffold surface. The fabricated highly porous scaffolds that could act as an antibiotic delivery system have great potential for applications in bone regeneration and tissue engineering, while preventing bacterial infections.

19.
Polymers (Basel) ; 13(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071224

ABSTRACT

Due to environmental concerns, more attention has been given to the development of bio-based materials for substitution of fossil-based ones. Moreover, paper use is essential in daily routine and several applications of industrial pulp can be developed. In this study, transparent films were produced by industrial cellulose pulp solubilization in tetramethylguanidine based ionic liquids followed by its regeneration. Films were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), UV/Vis spectroscopy, proton nuclear magnetic resonance (1H-NMR), dynamic scanning calorimetry (DSC), thermal analysis (TG), and X-ray diffraction (XRD). Mechanical tests showed that films have a good elongation property, up to 50%, depending on ionic liquid incorporation. The influence of the conjugated acid and dissolution temperature on mechanical properties were evaluated. These results revealed the potential of this methodology for the preparation of new biobased films.

20.
ACS Appl Mater Interfaces ; 13(6): 7567-7579, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33538168

ABSTRACT

Evidence has shown that hospital surfaces are one of the major vehicles of nosocomial infections caused by drug-resistant pathogens. Smart surface coatings presenting multiple antimicrobial activity mechanisms have emerged as an advanced approach to safely prevent this type of infection. In this work, industrial waterborne polyurethane varnish formulations containing for the first time cationic polymeric biocides (SPBs) combined with photosensitizer curcumin were developed to afford contact-active and light-responsive antimicrobial surfaces. SPBs were prepared by atom transfer radical polymerization, which allows control over the polymer features that influence antimicrobial efficiency (e.g., molecular weight), while natural curcumin was employed to impart photodynamic activity to the surface. Antibacterial testing against Gram-negative Escherichia coli revealed that glass surfaces coated with the new formulations displayed photokilling effect under white-light (42 mW/cm2) irradiation within only 15 min of exposure. In addition, it was observed a combined antimicrobial effect between the two biocides (cationic SPB and curcumin), with a higher reduction in the number of viable bacteria observed for the surfaces containing cationic SPB/curcumin mixtures in comparison with the one obtained for surfaces only with polymer or without biocides. The waterborne industrial varnish formulations allowed the formation of homogeneous films without the need for addition of a coalescing agent, which can be potentially applied in diverse surface substrates to reduce bacterial transmission infections in healthcare environments.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cross Infection/drug therapy , Escherichia coli/drug effects , Light , Polyurethanes/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Drug Compounding , Humans , Microbial Sensitivity Tests , Particle Size , Polyurethanes/chemical synthesis , Polyurethanes/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...