Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 93(3): e20201596, 2021.
Article in English | MEDLINE | ID: mdl-33978069

ABSTRACT

Moringa oleifera, a plant widely used in traditional medicine as well as for water purification, contains a lectin on its seeds named WSMoL which modulates several immune characteristics and has shown cardiac safe properties. Here, we tested the hypothesis that WSMoL is able to recover fasting glucose levels and to improve the cardiac left ventricular (LV) function in a type 2 diabetes mellitus (T2DM) mice model. T2DM was induced in adult C57BL/6 mice by combining a high fat diet and low doses of Streptozotocin. Mice were randomly divided in two groups: i. received WSMoL for 21 consecutive days by gavage (T2DM + WSMoL) and ii. received saline solution (T2DM). Metabolic parameters and LV function were assessed. WSMoL was able to reduce fasting blood glucose levels in T2DM mice after 2 weeks of treatment, when compared to T2DM untreated group. Regarding to cardiac LV function, the T2DM + WSMoL group depicted ejection fraction values comparable to non-diabetic group. Our results show: i. WSMoL treatment presented a potent hypoglycemic effect decreasing insulin resistance and ii. WSMoL was able to improve cardiac LV ejection fraction. Collectively, the results presented here show WSMoL as a potential hypoglycemic agent to be tested in T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Moringa oleifera , Animals , Diabetes Mellitus, Type 2/drug therapy , Humans , Lectins , Mice , Mice, Inbred C57BL , Seeds , Stroke Volume , Ventricular Function, Left , Water
2.
J Agric Food Chem ; 52(25): 7548-54, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15675802

ABSTRACT

This study starts by isolating and characterizing the first protein from Labramia bojeri seeds, which belong to the Sapotaceae family. The purified lectin analyzed by SDS-PAGE with and without beta-mercaptoethanol shows two protein bands (M(r) = 19 and 20 kDa), which cannot be resolved. Protein bands have shown similar characteristics as molecular masses, determined by gel filtration and native gel; N-terminal sequences presented a difference in their isoelectric points. We have suggested that those protein bands might be variants of the protein named Labramin. The sequence database search has shown that the N-terminal sequence of Labramin presented a high degree of homology to Kunitz-type trypsin inhibitor (82-52%) despite no trypsin inhibition activity detection. The lectin-like form from Labramin was better inhibited by glycoproteins and has also presented growth inhibition of the fungus Colletotrichum lindemuthianum and the yeast Saccharomyces cerevisiae, but it has not presented an apparent effect on Fusarium oxysporum.


Subject(s)
Peptides/isolation & purification , Plant Lectins/isolation & purification , Plant Proteins/isolation & purification , Sapotaceae/chemistry , Seeds/chemistry , Animals , Electrophoresis, Polyacrylamide Gel , Fungicides, Industrial/pharmacology , Hemagglutination , Humans , Hydrogen-Ion Concentration , Peptides/chemistry , Plant Lectins/chemistry , Plant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...