Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 27(3): 3023-3033, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31838689

ABSTRACT

Millipedes are organisms of the edaphic fauna and have been used as bioindicators for the evaluation of pollutants in the environment, as they are in constant contact with the soil. This study used the millipede Rhinocricus padbergi as surrogate to evaluate the toxicity of two metallic-insecticides that has been developed for leaf-cutting ants management. Millipedes were exposed in terrariums containing different concentrations of the metallic-insecticides and, after periods of 21 and 90 days, three individuals from each terrarium were dissected in order to remove the midgut, the organ where absorption of nutrients and, consequently, toxic substances occurs. The toxic action of the metallic-insecticides was analyzed through qualitative and semi-quantitative analysis of morphophysiological alterations and by quantitative analysis of the HSP70 stress protein. The results showed that the metallic-insecticides may increase HSP70 labeling, although not at all concentrations and periods of exposure. Histopathological alterations were not significant at any concentration, indicating that the cytoprotective action of HSP70 is able to prevent severe damage to the midgut. It is therefore suggested that the metallic-insecticides are not toxic to the species studied here as no toxicity was observed under the conditions tested. In addition, stress protein localization in midgut helps understand how morphophysiological processes can potentially be affected by pesticide exposure.


Subject(s)
Arthropods , Environmental Pollutants/toxicity , Insecticides/toxicity , Animals , HSP70 Heat-Shock Proteins/metabolism , Soil
2.
Ecotoxicol Environ Saf ; 165: 367-375, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30216895

ABSTRACT

Sugarcane vinasse is a residue generated at a rate fifteen times greater than the ethanol production. Because of its high organic and micronutrient content, this residue is used as a fertilizer on sugarcane crops. However, when used in large quantities, vinasse can saturate the soil and contaminate nearby water resources by percolation and leaching. Given the proven toxic potential of in natura vinasse, the present study aimed to evaluate the toxic potential of leached sugarcane vinasse using Nile tilapia (Oreochromis niloticus) as a test organism. A bioassay was performed after vinasse percolation in laboratory soil columns. The bioassay included one control group containing fresh water and two treatment groups, the first exposed to a 2,5% dilution of leached of vinasse and the second to a 2,5% dilution of in natura vinasse. After exposure, histopathological analysis was performed in gills and livers, and the latter were labelled for HSP70 proteins. No significant changes were detected in the gills of the exposed fish. However, in the liver, both in natura and leached vinasse induced statistically significant histopathological changes. These changes include hydropic degeneration, cell boundary losses, pyknotic nuclei and cellular disorganization. HSP70 expression significant increase in liver of both treatment groups were observed, being higher for the in natura vinasse exposed group. Results suggested that both leached vinasse and in natura vinasse were toxic, its still able to provoke histological changes and induce the cytoprotective response in exposed fish liver, evidenced by a immunostaining of cellular stress proteins. Thus, in order to reduce its environmental impact, appropriated effluent disposal is essential.


Subject(s)
Cichlids , Complex Mixtures/toxicity , Ethanol/toxicity , Gills/pathology , HSP70 Heat-Shock Proteins/metabolism , Liver/pathology , Animals , Ethanol/metabolism , Fertilizers/toxicity , Gills/metabolism , Liver/metabolism , Saccharum , Water Pollutants, Chemical/toxicity
3.
Environ Sci Pollut Res Int ; 24(27): 22007-22017, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28785943

ABSTRACT

Large amounts of residues generated by agricultural, urban and industrial activities are dumped daily on the soil. This practice deserves special attention because it causes serious environmental problems. This study evaluated the toxic potential of the sugarcane vinasse, a by-product of the sugar-alcohol industry, and the biosolid, a residue produced by wastewater treatment plants, both widely used as fertilizers. The evaluation was performed through bioassays using a typical soil bioindicator, the diplopod Rhinocricus padbergi. The specimens were exposed to soils containing these residues in concentrations that are compatible with the Brazilian regulation for agricultural use. Semi-quantitative immunolabelling analyses of the stress protein HSP70 were performed on the midgut of the studied diplopods. There was a significant increase in the immunolabelling of HSP70 proteins as a response to xenobiotics from both residues, particularly in regions where the function of the cells is the detoxification of the organ (e.g. the hepatic cell layer and specific regions of the epithelium). Higher immunolabelling was observed in the specimens exposed to vinasse in comparison with the biosolid exposure. This demonstrates that the substances in the tested residues had proteotoxic action in the exposed animals and induced a cytoprotective response, which led to higher stress protein immunolabelling. Therefore, caution is needed for the use of such residues in agriculture.


Subject(s)
Arthropod Proteins/genetics , Arthropods/drug effects , Heat-Shock Proteins/genetics , Saccharum/chemistry , Soil Pollutants/adverse effects , Solid Waste/adverse effects , Animals , Arthropod Proteins/metabolism , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Heat-Shock Proteins/metabolism , Organ Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...