Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 10(15): 6946-6958, 2020.
Article in English | MEDLINE | ID: mdl-32550914

ABSTRACT

Rationale: Transformed MUC1 (tMUC1) is a cancer-associated antigen that is overexpressed in >90% of triple-negative breast cancers (TNBC), a highly metastatic and aggressive subtype of breast cancer. TAB004, a murine antibody targeting tMUC1, has shown efficacy for the targeted delivery of therapeutics to cancer cells. Our aim was to evaluate humanized TAB004 (hTAB004) as a potential theranostic for TNBC. Methods: The internalization of hTAB004 in tMUC1 expressing HCC70 cells was assessed via fluorescent microscopy. hTAB004 was DOTA-conjugated and radiolabeled with Indium-111 or Actinium-225 and tested for stability and tMUC1 binding (ELISA, flow cytometry). Lastly, in vivo biodistribution (SPECT-CT), dosimetry, and efficacy of hTAB004 were evaluated using a TNBC orthotopic mouse model. Results: hTAB004 was shown to bind and internalize into tMUC1-expressing cells. A production method of 225Ac-DOTA-hTAB004 (yield>97%, RCP>97% SA=5 kBq/µg) and 111In-DOTA-hTAB004 (yield>70%, RCP>99%, SA=884 kBq/µg) was developed. The labeled molecules retained their affinity to tMUC1 and were stable in formulation and mouse serum. In NSG female mice bearing orthotopic HCC70 xenografts, the in vivo tumor concentration of 111In-DOTA-hTAB004 was 65 ± 15 %ID/g (120 h post injection). A single 225Ac-DOTA-hTAB004 dose (18.5 kBq) caused a significant reduction in tumor volume (P<0.001, day 22) and increased survival compared to controls (P<0.007). The human dosimetry results were comparable to other clinically used agents. Conclusion: The results obtained with hTAB004 suggest that the 111In/225Ac-DOTA-hTAB004 combination has significant potential as a theranostic strategy in TNBC and merits further development toward clinical translation.


Subject(s)
Actinium/chemistry , Antineoplastic Agents, Immunological/pharmacology , Indium Radioisotopes/chemistry , Mucin-1/metabolism , Radioimmunotherapy/methods , Triple Negative Breast Neoplasms/therapy , Actinium/pharmacokinetics , Animals , Antineoplastic Agents, Immunological/pharmacokinetics , Cell Line, Tumor , Female , Humans , Indium Radioisotopes/pharmacokinetics , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Mucin-1/chemistry , Precision Medicine , Tissue Distribution , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
2.
JCI Insight ; 4(20)2019 10 17.
Article in English | MEDLINE | ID: mdl-31619586

ABSTRACT

Intrathecal (IT) delivery and pharmacology of antisense oligonucleotides (ASOs) for the CNS have been successfully developed to treat spinal muscular atrophy. However, ASO pharmacokinetic (PK) and pharmacodynamic (PD) properties remain poorly understood in the IT compartment. We applied multimodal imaging techniques to elucidate the IT PK and PD of unlabeled, radioactively labeled, or fluorescently labeled ASOs targeting ubiquitously expressed or neuron-specific RNAs. Following lumbar IT bolus injection in rats, all ASOs spread rostrally along the neuraxis, adhered to meninges, and were partially cleared to peripheral lymph nodes and kidneys. Rapid association with the pia and arterial walls preceded passage of ASOs across the glia limitans, along arterial intramural basement membranes, and along white-matter axonal bundles. Several neuronal and glial cell types accumulated ASOs over time, with evidence of probable glial accumulation preceding neuronal uptake. IT doses of anti-GluR1 and anti-Gabra1 ASOs markedly reduced the mRNA and protein levels of their respective neurotransmitter receptor protein targets by 2 weeks and anti-Gabra1 ASOs also reduced binding of the GABAA receptor PET ligand 18F-flumazenil in the brain over 4 weeks. Our multimodal imaging approaches elucidate multiple transport routes underlying the CNS distribution, clearance, and efficacy of IT-dosed ASOs.


Subject(s)
Brain/metabolism , GABA-A Receptor Antagonists/pharmacokinetics , Muscular Atrophy, Spinal/drug therapy , Oligonucleotides, Antisense/pharmacokinetics , Animals , Arteries/diagnostic imaging , Arteries/metabolism , Brain/blood supply , Brain/cytology , Brain/diagnostic imaging , Flumazenil/administration & dosage , Flumazenil/analogs & derivatives , GABA-A Receptor Antagonists/administration & dosage , Gene Knockdown Techniques , Humans , Injections, Spinal , Intravital Microscopy , Male , Molecular Targeted Therapy/methods , Neuroglia/metabolism , Neurons/metabolism , Oligonucleotides, Antisense/administration & dosage , Pia Mater/diagnostic imaging , Pia Mater/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , Rats , Receptors, AMPA/analysis , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/genetics , Receptors, GABA-A/analysis , Receptors, GABA-A/genetics , Single Photon Emission Computed Tomography Computed Tomography , Spatio-Temporal Analysis , Thionucleotides/administration & dosage , Thionucleotides/pharmacokinetics , Tissue Distribution
3.
Appl Radiat Isot ; 140: 333-341, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30138815

ABSTRACT

In the present study, the effect of radiolabeling conditions on radiolabeling efficiency and achievable specific activity of a DOTA-conjugated highly-lipophilic peptide containing three disulfide cyclization bonds was examined. The peptide is designed to bind specifically (with high affinity) to cell-surface receptor guanylyl cyclase C (GCC), which is universally expressed by colorectal cancer cells. The effect of systematic variation of chemical parameters pH, mass of peptide, acetate buffer concentration (ionic strength), and inclusion of ethanol in the radiolabeling reaction vessel on achievable specific activity and labeling efficiency was examined. In addition, a unique approach to acetone-based elution of 68Ga from an initial cation-exchange pre-concentration column is introduced, which improved radiochemical yield and radiochemical purity. For the evaluation of the acetone-based method, two different post-radiolabeling reverse-phase (C18) approaches to purify the final radiolabeled peptide were tested. These results revealed the potential for peptide degradation via the cleavage of disulfide cyclization bonds to form free thiols when using one of these C18 cartridges. The final optimized procedure enabled radiolabeling efficiency of greater than 99% and specific activity greater than 35 MBq/nmole in less than 30 min. The optimized parameters were amenable to the use of an automated 68Ge/68Ga generator and fluid-handling system for clinical production of the GCC receptor-specific [68Ga]DOTA-MLN6907 peptide. The chemical characteristics of individual peptides govern the most appropriate radiolabeling conditions for the preparation of radiopharmaceuticals.


Subject(s)
Gallium Radioisotopes/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Chelating Agents/chemistry , Colorectal Neoplasms/diagnostic imaging , Humans , Peptides/pharmacokinetics , Positron-Emission Tomography , Radiochemistry/methods , Radiopharmaceuticals/pharmacokinetics , Receptors, Enterotoxin/metabolism
4.
J Med Chem ; 60(20): 8538-8551, 2017 10 26.
Article in English | MEDLINE | ID: mdl-28957634

ABSTRACT

As part of our effort in identifying phosphodiesterase (PDE) 4B-preferring inhibitors for the treatment of central nervous system (CNS) disorders, we sought to identify a positron emission tomography (PET) ligand to enable target occupancy measurement in vivo. Through a systematic and cost-effective PET discovery process, involving expression level (Bmax) and biodistribution determination, a PET-specific structure-activity relationship (SAR) effort, and specific binding assessment using a LC-MS/MS "cold tracer" method, we have identified 8 (PF-06445974) as a promising PET lead. Compound 8 has exquisite potency at PDE4B, good selectivity over PDE4D, excellent brain permeability, and a high level of specific binding in the "cold tracer" study. In subsequent non-human primate (NHP) PET imaging studies, [18F]8 showed rapid brain uptake and high target specificity, indicating that [18F]8 is a promising PDE4B-preferring radioligand for clinical PET imaging.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Phosphodiesterase Inhibitors/metabolism , Positron-Emission Tomography/methods , Animals , Cerebral Cortex/metabolism , Chromatography, Liquid , Drug Discovery , Macaca fascicularis , Radioligand Assay , Structure-Activity Relationship , Tandem Mass Spectrometry
5.
Nucl Med Biol ; 39(7): 1058-67, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22571907

ABSTRACT

INTRODUCTION: Fatty acid amide hydrolase (FAAH) is responsible for the enzymatic degradation of the fatty acid amide family of signaling lipids, including the endogenous cannabinoid (endocannabinoid) anandamide. The involvement of the endocannabinoid system in pain and other nervous system disorders has made FAAH an attractive target for drug development. Companion molecular imaging probes are needed, however, to assess FAAH inhibition in the nervous system in vivo. We report here the synthesis and in vivo evaluation of [(18)F]PF-9811, a novel PET ligand for non-invasive imaging of FAAH in the brain. METHODS: The potency and selectivity of unlabeled PF-9811 were determined by activity-based protein profiling (ABPP) both in vitro and in vivo. [(18)F]PF-9811 was synthesized in a 3-step, one-pot reaction sequence, followed by HPLC purification. Biological evaluation was performed by biodistribution and dynamic PET imaging studies in male rats. The specificity of [(18)F]PF-9811 uptake was evaluated by pre-administration of PF-04457845, a potent and selective FAAH inhibitor, 1h prior to radiotracer injection. RESULTS: Biodistribution studies show good uptake (SUV~0.8 at 90 min) of [(18)F]PF-9811 in rat brain, with significant reduction of the radiotracer in all brain regions (37%-73% at 90 min) in blocking experiments. Dynamic PET imaging experiments in rat confirmed the heterogeneous uptake of [(18)F]PF-9811 in brain regions with high FAAH enzymatic activity, as well as statistically significant reductions in signal following pre-administration of the blocking compound PF-04457845. CONCLUSIONS: [(18)F]PF-9811 is a promising PET imaging agent for FAAH. Biodistribution and PET imaging experiments show that the tracer has good uptake in brain, regional heterogeneity, and specific binding as determined by blocking experiments with the highly potent and selective FAAH inhibitor, PF-04457845.


Subject(s)
Amidohydrolases/metabolism , Brain/enzymology , Piperidines/chemical synthesis , Positron-Emission Tomography/methods , Pyridazines/chemical synthesis , Animals , Brain/diagnostic imaging , Chemistry Techniques, Synthetic , Ligands , Male , Piperidines/chemistry , Piperidines/pharmacokinetics , Pyridazines/chemistry , Pyridazines/pharmacokinetics , Radiochemistry , Rats
6.
Drug Metab Dispos ; 38(11): 1984-99, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20668248

ABSTRACT

The metabolism, pharmacokinetics, and excretion of a potent and selective 5-hydroxytryptamine(1B) receptor antagonist elzasonan have been studied in six healthy male human subjects after oral administration of a single 10-mg dose of [(14)C]elzasonan. Total recovery of the administered dose was 79% with approximately 58 and 21% of the administered radioactive dose excreted in feces and urine, respectively. The average t(1/2) for elzasonan was 31.5 h. Elzasonan was extensively metabolized, and excreta and plasma were analyzed using mass spectrometry and NMR spectroscopy to elucidate the structures of metabolites. The major component of drug-related material in the excreta was in the feces and was identified as 5-hydroxyelzasonan (M3), which accounted for approximately 34% of the administered dose. The major human circulating metabolite was identified as the novel cyclized indole metabolite (M6) and accounted for ∼65% of the total radioactivity. A mechanism for the formation of M6 is proposed. Furthermore, metabolism-dependent covalent binding of drug-related material was observed upon incubation of [(14)C]elzasonan with liver microsomes, and data suggest that an indole iminium ion is involved. Overall, the major metabolic pathways of elzasonan were due to aromatic hydroxylation(s) of the benzylidene moiety, N-oxidation at the piperazine ring, N-demethylation, indirect glucuronidation, and oxidation, ring closure, and subsequent rearrangement to form M6.


Subject(s)
Microsomes, Liver/metabolism , Morpholines/pharmacokinetics , Piperazines/pharmacokinetics , Receptor, Serotonin, 5-HT1B/metabolism , Serotonin 5-HT1 Receptor Antagonists/pharmacokinetics , Administration, Oral , Animals , Area Under Curve , Chromatography, High Pressure Liquid , Dogs , Feces/chemistry , Female , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Male , Metabolic Clearance Rate , Molecular Structure , Morpholines/blood , Morpholines/metabolism , Morpholines/urine , Piperazines/blood , Piperazines/metabolism , Piperazines/urine , Protein Binding , Rats , Serotonin 5-HT1 Receptor Antagonists/blood , Serotonin 5-HT1 Receptor Antagonists/metabolism , Serotonin 5-HT1 Receptor Antagonists/urine , Tandem Mass Spectrometry
7.
Drug Metab Dispos ; 35(6): 848-58, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17344339

ABSTRACT

2-(3-Chlorobenzyloxy)-6-(piperazin-1-yl)pyrazine (3) is a potent and selective 5-HT(2C) agonist that exhibits dose-dependent inhibition of food intake and reduction in body weight in rats, making it an attractive candidate for treatment of obesity. However, examination of the genotoxicity potential of 3 in the Salmonella Ames assay using tester strains TA98, TA100, TA1535, and TA1537 revealed a metabolism (rat S9/NADPH)- and dose-dependent increase of reverse mutations in strains TA100 and TA1537. The increase in reverse mutations was attenuated upon coincubation with methoxylamine and glutathione. The irreversible and concentration-dependent incorporation of radioactivity in calf thymus DNA after incubations with [14C]3 in the presence of rat S9/NADPH suggested that 3 was bioactivated to a reactive intermediate that covalently bound DNA. In vitro metabolism studies on 3 with rat S9/NADPH in the presence of methoxylamine and cyanide led to the detection of amine and cyano conjugates of 3. The mass spectrum of the amine conjugate was consistent with condensation of amine with an aldehyde metabolite derived from hydroxylation of the secondary piperazine nitrogen-alpha-carbon bond. The mass spectrum of the cyano conjugate suggested a bioactivation pathway involving N-hydroxylation of the secondary piperazine nitrogen followed by two-electron oxidation to generate an electrophilic nitrone, which reacted with cyanide. The 3-chlorobenzyl motif in 3 was also bioactivated via initial aromatic ring hydroxylation followed by elimination to a quinone-methide species that reacted with glutathione or with the secondary piperazine ring nitrogen in 3 and its monohydroxylated metabolite(s). The metabolism studies described herein provide a mechanistic basis for the mutagenicity of 3.


Subject(s)
Piperazines/toxicity , Pyrazines/toxicity , Salmonella typhimurium/drug effects , Serotonin 5-HT2 Receptor Agonists , Biotransformation , Mutagenicity Tests , Obesity , Piperazines/chemical synthesis , Piperazines/metabolism , Pyrazines/chemical synthesis , Pyrazines/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...