Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Brain Sci ; 14(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928612

ABSTRACT

Cerebral intraparenchymal hemorrhage due to electrode implantation (CIPHEI) is a rare but serious complication of deep brain stimulation (DBS) surgery. This study retrospectively investigated a large single-center cohort of DBS implantations to calculate the frequency of CIPHEI and identify patient- and procedure-related risk factors for CIPHEI and their potential interactions. We analyzed all DBS implantations between January 2013 and December 2021 in a generalized linear model for binomial responses using bias reduction to account for sparse sampling of CIPHEIs. As potential risk factors, we considered age, gender, history of arterial hypertension, level of invasivity, types of micro/macroelectrodes, and implanted DBS electrodes. If available, postoperative coagulation and platelet function were exploratorily assessed in CIPHEI patients. We identified 17 CIPHEI cases across 839 electrode implantations in 435 included procedures in 418 patients (3.9%). Exploration and cross-validation analyses revealed that the three-way interaction of older age (above 60 years), high invasivity (i.e., use of combined micro/macroelectrodes), and implantation of directional DBS electrodes accounted for 82.4% of the CIPHEI cases. Acquired platelet dysfunction was present only in one CIPHEI case. The findings at our center suggested implantation of directional DBS electrodes as a new potential risk factor, while known risks of older age and high invasivity were confirmed. However, CIPHEI risk is not driven by the three factors alone but by their combined presence. The contributions of the three factors to CIPHEI are hence not independent, suggesting that potentially modifiable procedural risks should be carefully evaluated when planning DBS surgery in patients at risk.

2.
Epilepsia ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837755

ABSTRACT

OBJECTIVE: Short-term outcomes of deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) were reported for people with drug-resistant focal epilepsy (PwE). Because long-term data are still scarce, the Medtronic Registry for Epilepsy (MORE) evaluated clinical routine application of ANT-DBS. METHODS: In this multicenter registry, PwE with ANT-DBS were followed up for safety, efficacy, and battery longevity. Follow-up ended after 5 years or upon study closure. Clinical characteristics and stimulation settings were compared between PwE with no benefit, improvers, and responders, that is, PwE with average monthly seizure frequency reduction rates of ≥50%. RESULTS: Of 170 eligible PwE, 104, 62, and 49 completed the 3-, 4-, and 5-year follow-up, respectively. Most discontinuations (68%) were due to planned study closure as follow-up beyond 2 years was optional. The 5-year follow-up cohort had a median seizure frequency reduction from 16 per month at baseline to 7.9 per month at 5-year follow-up (p < .001), with most-pronounced effects on focal-to-bilateral tonic-clonic seizures (n = 15, 77% reduction, p = .008). At last follow-up (median 3.5 years), 41% (69/170) of PwE were responders. Unifocal epilepsy (p = .035) and a negative history of epilepsy surgery (p = .002) were associated with larger average monthly seizure frequency reductions. Stimulation settings did not differ between response groups. In 179 implanted PwE, DBS-related adverse events (AEs, n = 225) and serious AEs (n = 75) included deterioration in epilepsy or seizure frequency/severity/type (33; 14 serious), memory/cognitive impairment (29; 3 serious), and depression (13; 4 serious). Five deaths occurred (none were ANT-DBS related). Most AEs (76.3%) manifested within the first 2 years after implantation. Activa PC depletion (n = 37) occurred on average after 45 months. SIGNIFICANCE: MORE provides further evidence for the long-term application of ANT-DBS in clinical routine practice. Although clinical benefits increased over time, side effects occurred mainly during the first 2 years. Identified outcome modifiers can help inform PwE selection and management.

3.
Brain ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808482

ABSTRACT

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomo-functional mechanisms governing human behaviour as well as the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. While the ventral tegmental area has been successfully targeted with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region has not been fully understood. Here using fiber micro-dissections in human cadaveric hemispheres, population-based high-definition fiber tractography, and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain, and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches, and aggressive behaviors.

4.
Article in English | MEDLINE | ID: mdl-38613674

ABSTRACT

Device aided therapies (DAT) comprising the intrajejunal administration of levodopa/carbidopa intestinal gel (LCIG) and levodopa/carbidopa/entacapone intestinal gel (LECIG), the continuous subcutaneous application of foslevodopa/foscarbidopa or apomorphine infusion (CSAI) and deep brain stimulation (DBS) are used to treat Parkinson's disease with insufficient symptom alleviation under intensified pharmacotherapy. These DAT significantly differ in their efficacy profiles, indication, invasiveness, contraindications, and potential side effects. Usually, the evaluation of all these procedures is conducted simultaneously at the same point in time. However, as disease progression and symptom burden is extremely heterogeneous, clinical experience shows that patients reach the individual milestones for a certain therapy at different points in their disease course. Therefore, advocating for an individualized therapy evaluation for each DAT, requiring an ongoing evaluation. This necessitates that, during each consultation, the current symptomatology should be analyzed, and the potential suitability for a DAT be assessed. This work represents a critical interdisciplinary appraisal of these therapies in terms of their individual profiles and compares these DAT regarding contraindications, periprocedural considerations as well as their efficacy regarding motor- and non-motor deficits, supporting a personalized approach.

5.
Article in English | MEDLINE | ID: mdl-38636702

ABSTRACT

BACKGROUND: Reserpine (RES), a Vesicular Monoamine Transporter 2 (VMAT2) inhibitor agent, has been used in preclinical research for many years to create animal models for depression and to test experimental antidepressant strategies. Nevertheless, evidence of the potential use and validity of RES as a chronic pharmacological model for depression is lacking, and there are no comprehensive studies of the behavioral effects in conjunction with molecular outcomes. METHODS: Experiment 1. Following baseline behavior testing sensitive to depression-like phenotype and locomotion (Phase 1), 27 Sprague-Dawley (SD) rats received i.p. either vehicle solution (0.0 mg/kg), low (0.2 mg/kg) or high (0.8 mg/kg) RES dose for 20 days using a pre-determined schedule and reassessed for behavioral phenotypes (Phase 2). After 10 days washout period, and a final behavioral assessment (Phase 3), the brains were collected 16 days after the last injection for mRNA-expression assessment. Experiment 2. In a similar timetable as in Experiment 1 but without the behavioral testing, 12 SD rats underwent repetitive dopamine D2/3 receptor PET scanning with [18F]DMFP following each Phase. The binding potential (BPND) of [18F]DMFP was quantified by kinetic analysis as a marker of striatal D2/3R availability. Weight and welfare were monitored throughout the study. RESULTS: Significant, dose-dependent weight loss and behavioral deficits including both motor (hypo-locomotion) and non-motor behavior (anhedonia, mild anxiety and reduced exploration) were found for both the low and high dose groups with significant decrease in D2R mRNA expression in the accumbal region for the low RES group after Phase 3. Both RES treated groups showed substantial increase in [18F]DMFP BPND (in line with dopamine depletion) during Phase 2 and 3 compared to baseline and Controls. CONCLUSIONS: The longitudinal design of the study demonstrated that chronic RES administration induced striatal dopamine depletion that persisted even after the wash-out period. However, the behavior phenotype observed were transient. The data suggest that RES administration can induce a rodent model for depression with mild face validity.


Subject(s)
Depression , Disease Models, Animal , Positron-Emission Tomography , Rats, Sprague-Dawley , Reserpine , Animals , Reserpine/pharmacology , Male , Rats , Depression/chemically induced , Depression/metabolism , Behavior, Animal/drug effects , Receptors, Dopamine/metabolism , Dose-Response Relationship, Drug , Brain/metabolism , Brain/drug effects , Brain/diagnostic imaging , Vesicular Monoamine Transport Proteins/metabolism , Motor Activity/drug effects
6.
Neuroimage Clin ; 42: 103607, 2024.
Article in English | MEDLINE | ID: mdl-38643635

ABSTRACT

BACKGROUND: Nigrostriatal microstructural integrity has been suggested as a biomarker for levodopa response in Parkinson's disease (PD), which is a strong predictor for motor response to deep brain stimulation (DBS) of the subthalamic nucleus (STN). This study aimed to explore the impact of microstructural integrity of the substantia nigra (SN), STN, and putamen on motor response to STN-DBS using diffusion microstructure imaging. METHODS: Data was collected from 23 PD patients (mean age 63 ± 7, 6 females) who underwent STN-DBS, had preoperative 3 T diffusion magnetic resonance imaging including multishell diffusion-weighted MRI with b-values of 1000 and 2000 s/mm2 and records of motor improvement available. RESULTS: The association between a poorer DBS-response and increased free interstitial fluid showed notable effect sizes (rho > |0.4|) in SN and STN, but not in putamen. However, this did not reach significance after Bonferroni correction and controlling for sex and age. CONCLUSION: Microstructural integrity of SN and STN are potential biomarkers for the prediction of therapy efficacy following STN-DBS, but further studies are required to confirm these associations.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Substantia Nigra , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Subthalamic Nucleus/diagnostic imaging , Subthalamic Nucleus/pathology , Female , Male , Parkinson Disease/therapy , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Middle Aged , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology , Aged , Diffusion Magnetic Resonance Imaging/methods , Treatment Outcome
7.
Acta Neurochir (Wien) ; 166(1): 145, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38514531

ABSTRACT

PURPOSE: This study is to report some preliminary surgical considerations and outcomes after the first implantations of a new and commercially available implantable epicranial stimulation device for focal epilepsy. METHODS: We retrospectively analyzed data from clinical notes. Outcome parameters were as follows: wound healing, surgery time, and adverse events. RESULTS: Five patients were included (17-52 y/o; 3 female). Epicranial systems were uneventfully implanted under neuronavigation guidance. Some minor adverse events occurred. Wound healing in primary intention was seen in all patients. Out of these surgeries, certain concepts were developed: Skin incisions had to be significantly larger than expected. S-shaped incisions appeared to be a good choice in typical locations behind the hairline. Preoperative discussions between neurologist and neurosurgeon are mandatory in order to allow for the optimal coverage of the epileptogenic zone with the electrode geometry. CONCLUSION: In this first small series, we were able to show safe implantation of this new epicranial stimulation device. The use of neuronavigation is strongly recommended. The procedure is simple but not trivial and ideally belongs in the hands of a neurosurgeon.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Female , Epilepsy/surgery , Retrospective Studies , Drug Resistant Epilepsy/surgery , Cerebral Cortex , Electrodes, Implanted , Treatment Outcome
8.
Article in German | MEDLINE | ID: mdl-38346694

ABSTRACT

In the therapy of Parkinson̓s disease, both the intrajejunal administration of Levodopa/Carbidopa Intestinal Gel (LCIG) and, more recently, Levodopa/Carbidopa/Entacapone Intestinal Gel (LECIG), as well as deep brain stimulation (DBS), are employed. These approaches differ significantly in their efficacy and side effect profiles, as well as the timing of their use. Yet, the initiation of therapy for both methods is often simultaneously considered when patients have reached an advanced stage of the disease. From the authors' perspective, however, patients may reach the milestones for the indication of one of these respective treatments at different points in the course of the disease. Individual disease progression plays a pivotal role in this regard. The concept that all patients become candidates for a specific treatment at a predefined time appears erroneous to the authors. In the context of this review, therefore, the therapeutic modalities are presented in terms of their efficacy for different symptoms, the notion of simultaneous timing of their initiation is questioned, and an individualized therapy evaluation is derived, with a focus on quality of life and participation.

9.
Neuroimage Clin ; 41: 103576, 2024.
Article in English | MEDLINE | ID: mdl-38367597

ABSTRACT

BACKGROUND: Thalamic deep brain stimulation (DBS) is an efficacious treatment for drug-resistant essential tremor (ET) and the dentato-rubro-thalamic tract (DRT) constitutes an important target structure. However, up to 40% of patients habituate and lose treatment efficacy over time, frequently accompanied by a stimulation-induced cerebellar syndrome. The phenomenon termed delayed therapy escape (DTE) is insufficiently understood. Our previous work showed that DTE clinically is pronounced on the non-dominant side and suggested that differential involvement of crossed versus uncrossed DRT (DRTx/DRTu) might play a role in DTE development. METHODS: We retrospectively enrolled right-handed patients under bilateral thalamic DBS >12 months for ET from a cross-sectional study. They were characterized with the Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS) and Scale for the Assessment and Rating of Ataxia (SARA) scores at different timepoints. Normative fiber tractographic evaluations of crossed and uncrossed cerebellothalamic pathways and volume of activated tissue (VAT) studies together with [18F]Fluorodeoxyglucose positron emission tomography were applied. RESULTS: A total of 29 patients met the inclusion criteria. Favoring DRTu over DRTx in the non-dominant VAT was associated with DTE (R2 = 0.4463, p < 0.01) and ataxia (R2 = 0.2319, p < 0.01). Moreover, increasing VAT size on the right (non-dominant) side was associated at trend level with more asymmetric glucose metabolism shifting towards the right (dominant) dentate nucleus. CONCLUSION: Our results suggest that a disbalanced recruitment of DRTu in the non-dominant VAT induces detrimental stimulation effects on the dominant cerebellar outflow (together with contralateral stimulation) leading to DTE and thus hampering the overall treatment efficacy.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Humans , Essential Tremor/diagnostic imaging , Essential Tremor/therapy , Deep Brain Stimulation/methods , Cross-Sectional Studies , Retrospective Studies , Diffusion Tensor Imaging/methods , Thalamus/diagnostic imaging , Thalamus/physiology , Treatment Outcome , Ataxia
10.
Stereotact Funct Neurosurg ; 102(1): 40-54, 2024.
Article in English | MEDLINE | ID: mdl-38086346

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) is a highly efficient, evidence-based therapy to alleviate symptoms and improve quality of life in movement disorders such as Parkinson's disease, essential tremor, and dystonia, which is also being applied in several psychiatric disorders, such as obsessive-compulsive disorder and depression, when they are otherwise resistant to therapy. SUMMARY: At present, DBS is clinically applied in the so-called open-loop approach, with fixed stimulation parameters, irrespective of the patients' clinical state(s). This approach ignores the brain states or feedback from the central nervous system or peripheral recordings, thus potentially limiting its efficacy and inducing side effects by stimulation of the targeted networks below or above the therapeutic level. KEY MESSAGES: The currently emerging closed-loop (CL) approaches are designed to adapt stimulation parameters to the electrophysiological surrogates of disease symptoms and states. CL-DBS paves the way for adaptive personalized DBS protocols. This review elaborates on the perspectives of the CL technology and discusses its opportunities as well as its potential pitfalls for both clinical and research use in neuropsychiatric disorders.


Subject(s)
Deep Brain Stimulation , Mental Disorders , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Quality of Life , Brain , Mental Disorders/therapy , Parkinson Disease/therapy
11.
Mov Disord ; 38(9): 1736-1742, 2023 09.
Article in English | MEDLINE | ID: mdl-37358761

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) has been increasingly used in the management of dyskinetic cerebral palsy (DCP). Data on long-term effects and the safety profile are rare. OBJECTIVES: We assessed the efficacy and safety of pallidal DBS in pediatric patients with DCP. METHODS: The STIM-CP trial was a prospective, single-arm, multicenter study in which patients from the parental trial agreed to be followed-up for up to 36 months. Assessments included motor and non-motor domains. RESULTS: Of the 16 patients included initially, 14 (mean inclusion age 14 years) were assessed. There was a significant change in the (blinded) ratings of the total Dyskinesia Impairment Scale at 36 months. Twelve serious adverse events (possibly) related to treatment were documented. CONCLUSION: DBS significantly improved dyskinesia, but other outcome parameters did not change significantly. Investigations of larger homogeneous cohorts are needed to further ascertain the impact of DBS and guide treatment decisions in DCP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cerebral Palsy , Deep Brain Stimulation , Dyskinesias , Movement Disorders , Humans , Child , Adolescent , Cerebral Palsy/therapy , Follow-Up Studies , Prospective Studies , Dyskinesias/etiology , Dyskinesias/therapy , Globus Pallidus , Movement Disorders/therapy , Treatment Outcome
12.
Brain Stimul ; 16(2): 670-681, 2023.
Article in English | MEDLINE | ID: mdl-37028755

ABSTRACT

BACKGROUND: Understanding prefrontal cortex projections to diencephalic-mesencephalic junction (DMJ), especially to subthalamic nucleus (STN) and ventral mesencephalic tegmentum (VMT) helps our comprehension of Deep Brain Stimulation (DBS) in major depression (MD) and obsessive-compulsive disorder (OCD). Fiber routes are complex and tract tracing studies in non-human primate species (NHP) have yielded conflicting results. The superolateral medial forebrain bundle (slMFB) is a promising target for DBS in MD and OCD. It has become a focus of criticism owing to its name and its diffusion weighted-imaging based primary description. OBJECTIVE: To investigate DMJ connectivity in NHP with a special focus on slMFB and the limbic hyperdirect pathway utilizing three-dimensional and data driven techniques. METHODS: We performed left prefrontal adeno-associated virus - tracer based injections in the common marmoset monkey (n = 52). Histology and two-photon microscopy were integrated into a common space. Manual and data driven cluster analyses of DMJ, subthalamic nucleus and VMT together, followed by anterior tract tracing streamline (ATTS) tractography were deployed. RESULTS: Typical pre- and supplementary motor hyperdirect connectivity was confirmed. The advanced tract tracing unraveled the complex connectivity to the DMJ. Limbic prefrontal territories directly projected to the VMT but not STN. DISCUSSION: Intricate results of tract tracing studies warrant the application of advanced three-dimensional analyses to understand complex fiber-anatomical routes. The applied three-dimensional techniques can enhance anatomical understanding also in other regions with complex fiber anatomy. CONCLUSION: Our work confirms slMFB anatomy and enfeebles previous misconceptions. The rigorous NHP approach strengthens the role of the slMFB as a target structure for DBS predominantly in psychiatric indications like MD and OCD.


Subject(s)
Deep Brain Stimulation , Subthalamic Nucleus , Animals , Callithrix , Deep Brain Stimulation/methods , Medial Forebrain Bundle , Mesencephalon
13.
JAMA Neurol ; 80(6): 588-596, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37010826

ABSTRACT

Importance: For the large population of people with drug-refractory epilepsy, alternative treatment approaches are needed. Clinical trial outcomes of a novel stimulation device, which is newly available in Europe for the treatment of patients with a predominant seizure focus, are reported for the first time. Objective: To perform a pooled analysis of the results of 2 prospective, multicenter, single-arm trials, A Pilot Study to Assess the Feasibility of Neurostimulation With the EASEE System to Treat Medically Refractory Focal Epilepsy (EASEE II) and A Pilot Study to Assess the Feasibility of Patient-Controlled Neurostimulation With the EASEE System to Treat Medically Refractory Focal Epilepsy (PIMIDES I), assessing the safety and efficacy of epicranial focal cortex stimulation (FCS) with a novel implantable device (EASEE [Precisis]) as adjunctive treatment for adult patients with drug-refractory focal epilepsy. Design, Setting, and Participants: This study was a pooled analysis of 2 nonrandomized uncontrolled trials, EASEE II and PIMIDES I, which began on January 15, 2019, and January 14, 2020, respectively, and ended on July 28, 2021. EASEE II and PIMIDES I were the first in-human, prospective, single-arm trials with an 8-month evaluation period. Patients were recruited at 7 European epilepsy centers. Consecutive participants with drug-refractory focal epilepsy were enrolled. Study data were analyzed from September 29, 2021, to February 2, 2022. Interventions: After a 1-month prospective baseline period, patients were implanted with the neurostimulation device. After a 1-month postimplantation recovery period, unblinded FCS was activated using both high-frequency and direct current (DC)-like components performed via electrode arrays placed epicranially above the individual epileptic focus region. Main Outcomes and Measures: Efficacy was prospectively assessed by the responder rate in the sixth month of stimulation compared with baseline; safety and additional end points were assessed after device implantation and during the stimulation period. Results: Of the 34 adult patients enrolled at 6 German and 1 Belgian investigational site, 33 (mean [SD] age, 34.6 [13.5] years; 18 male patients [54.5%]) received the neurostimulation device implant. A total of 32 patients underwent combined high-frequency direct current-like stimulation at least until the 8-month postimplant follow-up visit. After 6 months of stimulation, 17 of 32 patients (53.1%) were responders to treatment with at least a 50% reduction in seizure frequency compared with baseline, corresponding to a significant median seizure reduction by 52% (95% CI, 0.37%-0.76%; P < .001). No device- or procedure-related serious adverse events were reported (0; 95% CI, 0%-10.58%). There were no significant alterations in cognition, mood, or overall quality of life. Conclusions and Relevance: Results of this pooled analysis of 2 nonrandomized uncontrolled trials suggest that FCS with a novel neurostimulation device was associated with an effective reduction in seizure frequency in patients with drug-refractory focal epilepsy and may offer a promising treatment option for patients with a predominant epileptic focus. Trial Registration: German Clinical Trials Register: DRKS00015918 and DRKS00017833, respectively, and jointly under PROSPERO: CRD42021266440.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy , Adult , Humans , Male , Quality of Life , Prospective Studies , Pilot Projects , Epilepsy/drug therapy , Epilepsies, Partial/therapy , Seizures/drug therapy , Drug Resistant Epilepsy/therapy , Anticonvulsants/therapeutic use , Treatment Outcome
14.
Neurology ; 100(18): e1852-e1865, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36927882

ABSTRACT

BACKGROUND AND OBJECTIVES: The efficacy of deep brain stimulation of the anterior nucleus of the thalamus (ANT DBS) in patients with drug-resistant epilepsy (DRE) was demonstrated in the double-blind Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy randomized controlled trial. The Medtronic Registry for Epilepsy (MORE) aims to understand the safety and longer-term effectiveness of ANT DBS therapy in routine clinical practice. METHODS: MORE is an observational registry collecting prospective and retrospective clinical data. Participants were at least 18 years old, with focal DRE recruited across 25 centers from 13 countries. They were followed for at least 2 years in terms of seizure frequency (SF), responder rate (RR), health-related quality of life (Quality of Life in Epilepsy Inventory 31), depression, and safety outcomes. RESULTS: Of the 191 patients recruited, 170 (mean [SD] age of 35.6 [10.7] years, 43% female) were implanted with DBS therapy and met all eligibility criteria. At baseline, 38% of patients reported cognitive impairment. The median monthly SF decreased by 33.1% from 15.8 at baseline to 8.8 at 2 years (p < 0.0001) with 32.3% RR. In the subgroup of 47 patients who completed 5 years of follow-up, the median monthly SF decreased by 55.1% from 16 at baseline to 7.9 at 5 years (p < 0.0001) with 53.2% RR. High-volume centers (>10 implantations) had 42.8% reduction in median monthly SF by 2 years in comparison with 25.8% in low-volume center. In patients with cognitive impairment, the reduction in median monthly SF was 26.0% by 2 years compared with 36.1% in patients without cognitive impairment. The most frequently reported adverse events were changes (e.g., increased frequency/severity) in seizure (16%), memory impairment (patient-reported complaint, 15%), depressive mood (patient-reported complaint, 13%), and epilepsy (12%). One definite sudden unexpected death in epilepsy case was reported. DISCUSSION: The MORE registry supports the effectiveness and safety of ANT DBS therapy in a real-world setting in the 2 years following implantation. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that ANT DBS reduces the frequency of seizures in patients with drug-resistant focal epilepsy. TRIAL REGISTRATION INFORMATION: MORE ClinicalTrials.gov Identifier: NCT01521754, first posted on January 31, 2012.


Subject(s)
Anterior Thalamic Nuclei , Deep Brain Stimulation , Drug Resistant Epilepsy , Epilepsy , Humans , Female , Child , Adolescent , Male , Deep Brain Stimulation/adverse effects , Quality of Life , Retrospective Studies , Prospective Studies , Thalamus , Epilepsy/etiology , Drug Resistant Epilepsy/therapy , Seizures/etiology , Registries
15.
Epilepsia Open ; 8(2): 673-677, 2023 06.
Article in English | MEDLINE | ID: mdl-36929857

ABSTRACT

Whereas high-level evidence exists on chronic neuromodulatory effects of different brain stimulation approaches in reducing seizure frequency, evidence for acute antiseizure effects of electrical brain stimulation during seizures is sparse. As part of an ongoing trial, we implanted a patient with a novel focal cortex stimulation (FCS) device with a Laplacian electrode placed over a precentral focal cortical dysplasia. The baseline seizure frequency was 125 per month, consisting of (i) focal aware sensory seizures that invariably progressed to uni- or bilateral tonic contraction and clonic jerking, and (ii) primary motor seizures. Besides an overall reduction in seizure frequency, on-demand stimulation had an immediate effect on seizures with a sensory phase, whereby 63%-86% of these seizures were terminated by ictal stimulation. These observations provide the first evidence that ictal self-triggered transcranial focal cortex stimulation can significantly interfere with the progression of seizure semiology.


Subject(s)
Deep Brain Stimulation , Seizures , Humans , Brain , Cerebral Cortex , Electric Stimulation , Seizures/therapy , Male , Adult
16.
J Neurointerv Surg ; 15(7): 708-711, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35853700

ABSTRACT

BACKGROUND: Minimally invasive intracranial drain placement is a common neurosurgical emergency procedure in patients with intracerebral hemorrhage (ICH). We aimed to retrospectively investigate the accuracy of conventional freehand (bedside) hemorrhage drain placement and to prospectively compare the accuracy of augmented/mixed reality-guided (AR) versus frame-based stereotaxy-guided (STX) and freehand drain placement in a phantom model. METHODS: A retrospective, single-center analysis evaluated the accuracy of drain placement in 73 consecutive ICH with a visual rating of postinterventional CT data. In a head phantom with a simulated deep ICH, five neurosurgeons performed four punctures for each technique: STX, AR, and the freehand technique. The Euclidean distance to the target point and the lateral deviation of the achieved trajectory from the planned trajectory at target point level were compared between the three methods. RESULTS: Analysis of the clinical cases revealed an optimal drainage position in only 46/73 (63%). Correction of the drain was necessary in 23/73 cases (32%). In the phantom study, accuracy of AR was significantly higher than the freehand method (P<0.001 for both Euclidean and lateral distances). The Euclidean distance using AR (median 3 mm) was close to that using STX (median 1.95 mm; P=0.023). CONCLUSIONS: We demonstrated that the accuracy of the freehand technique was low and that subsequent position correction was common. In a phantom model, AR drainage placement was significantly more precise than the freehand method. AR has great potential to increase precision of emergency intracranial punctures in a bedside setting.


Subject(s)
Augmented Reality , Humans , Retrospective Studies , Punctures/methods , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/surgery , Drainage/methods
17.
Neuromodulation ; 26(2): 302-309, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36424266

ABSTRACT

INTRODUCTION: Recent developments in the postoperative evaluation of deep brain stimulation surgery on the group level warrant the detection of achieved electrode positions based on postoperative imaging. Computed tomography (CT) is a frequently used imaging modality, but because of its idiosyncrasies (high spatial accuracy at low soft tissue resolution), it has not been sufficient for the parallel determination of electrode position and details of the surrounding brain anatomy (nuclei). The common solution is rigid fusion of CT images and magnetic resonance (MR) images, which have much better soft tissue contrast and allow accurate normalization into template spaces. Here, we explored a deep-learning approach to directly relate positions (usually the lead position) in postoperative CT images to the native anatomy of the midbrain and group space. MATERIALS AND METHODS: Deep learning is used to create derived tissue contrasts (white matter, gray matter, cerebrospinal fluid, brainstem nuclei) based on the CT image; that is, a convolution neural network (CNN) takes solely the raw CT image as input and outputs several tissue probability maps. The ground truth is based on coregistrations with MR contrasts. The tissue probability maps are then used to either rigidly coregister or normalize the CT image in a deformable way to group space. The CNN was trained in 220 patients and tested in a set of 80 patients. RESULTS: Rigorous validation of such an approach is difficult because of the lack of ground truth. We examined the agreements between the classical and proposed approaches and considered the spread of implantation locations across a group of identically implanted subjects, which serves as an indicator of the accuracy of the lead localization procedure. The proposed procedure agrees well with current magnetic resonance imaging-based techniques, and the spread is comparable or even lower. CONCLUSIONS: Postoperative CT imaging alone is sufficient for accurate localization of the midbrain nuclei and normalization to the group space. In the context of group analysis, it seems sufficient to have a single postoperative CT image of good quality for inclusion. The proposed approach will allow researchers and clinicians to include cases that were not previously suitable for analysis.


Subject(s)
Deep Brain Stimulation , Deep Learning , Humans , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Brain/surgery , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging/methods
18.
World J Biol Psychiatry ; 24(6): 539-544, 2023.
Article in English | MEDLINE | ID: mdl-36484230

ABSTRACT

INTRODUCTION: The etio-pathophysiology of obsessive-compulsive disorder (OCD) can be explained using a biopsychosocial model. Little is known about obsessive-compulsive symptoms (OCS) in the context of chromosomal disorders involving the X chromosome. METHODS: Case studies of two patients with chromosomal disorders involving the X chromosome (Patient 1 with a variant of Turner syndrome and Patient 2 with triple X syndrome). RESULTS: Both patients were treated due to severe OCS. In the research MRI analysis, the most pronounced MRI change in both patients was a gray matter volume loss in the orbitofrontal cortex. Patient 1 additionally showed left mesiotemporal changes. Patient 2 presented with global gray matter volume reduction, slowing in EEG, and a reduced intelligence quotient. DISCUSSION: OCS could occur in the context of Turner syndrome or triple X syndrome. The detected MRI changes would be compatible with dysfunction of the cortico-striato-thalamo-cortical loops involved in OCD pathophysiology. Further studies with larger patient groups should investigate whether this association can be validated.


Subject(s)
Chromosome Disorders , Obsessive-Compulsive Disorder , Turner Syndrome , Humans , Turner Syndrome/complications , Turner Syndrome/genetics , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/genetics , X Chromosome
SELECTION OF CITATIONS
SEARCH DETAIL
...