Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Langmuir ; 33(11): 2689-2697, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28241120

ABSTRACT

The adsorption of particles at liquid-liquid interfaces is of great scientific and technological importance. In particular, for nonspherical particles, the capillary forces that drive adsorption vary with position and orientation, and complex adsorption pathways have been predicted by simulations. On the basis of the latter, it has been suggested that the timescales of adsorption are determined by a balance between capillary and viscous forces. However, several recent experimental results point out the role of contact line pinning in the adsorption of particles to interfaces and even suggest that the adsorption dynamics and pathways are completely determined by the latter, with the timescales of adsorption being determined solely by particle characteristics. In the present work, the adsorption trajectories of model ellipsoidal particles are investigated experimentally using cryo-SEM and by monitoring the altitudinal orientation angle using high-speed confocal microscopy. By varying the viscosity and the viscosity jump across the interfaces, we specifically interrogate the role of viscous forces.

2.
Langmuir ; 30(15): 4289-300, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24720442

ABSTRACT

The wetting of anisotropic colloidal particles is of great importance in several applications, including Pickering emulsions, filled foams, and membrane transduction by particles. However, the combined effect of shape and surface chemistry on the three-phase contact angle of anisotropic micrometer and submicrometer colloids has been poorly investigated to date, due to the lack of a suitable experimental technique to resolve individual particles. In the present work, we investigate the variation of the contact angle of prolate ellipsoidal colloids at a liquid-liquid interface as a function of surface chemistry and aspect ratio using freeze-fracture shadow-casting cryo-SEM. The method, initially demonstrated for spherical colloids, is extended here to the more general case of ellipsoids. The prolate ellipsoidal particles are prepared from polystyrene and poly(methyl methacrylate) spheres using a film stretching technique, in which cleaning steps are needed to remove all film material from the particle surface. The effects of the preparation protocol are reported, and wrinkling of the three-phase contact line is observed when the particle surface is insufficiently cleaned. For identically prepared ellipsoids, the cosine of the measured contact angle is, in a first approximation, a linearly decreasing function of the contact line length and thus a decreasing function of the aspect ratio. Such a trend violates Young-Laplace's equation and can be rationalized by adding a correction term to the ideal Young-Laplace contact angle that expresses the relative importance of line effects relative to surface effects. From this term the contribution of an effective line tension can be extracted. This contribution includes the effects that both surface chemical and topographical heterogeneities have on the contact line and which become increasingly more important for ellipsoids with higher aspect ratios, where the contact line length to contact area ratio increases.


Subject(s)
Colloids/chemistry , Cryoelectron Microscopy , Polymethyl Methacrylate/chemistry , Polystyrenes
SELECTION OF CITATIONS
SEARCH DETAIL
...