Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 15148, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28474679

ABSTRACT

The notion of a quasiparticle, such as a phonon, a roton or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C9H18N2CuBr4. Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.

2.
Article in English | MEDLINE | ID: mdl-26382355

ABSTRACT

We introduce a white-graph expansion for the method of perturbative continuous unitary transformations when implemented as a linked-cluster expansion. The essential idea behind an expansion in white graphs is to perform an optimized bookkeeping during the calculation by exploiting the model-independent effective Hamiltonian in second quantization and the associated inherent cluster additivity. This approach is shown to be especially well suited for microscopic models with many coupling constants, since the total number of relevant graphs is drastically reduced. The white-graph expansion is exemplified for a two-dimensional quantum spin model of coupled two-leg XXZ ladders.

SELECTION OF CITATIONS
SEARCH DETAIL
...