Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
iScience ; 27(2): 108921, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38323005

ABSTRACT

Genome-wide association studies have identified thousands of single nucleotide polymorphisms that associate with increased risk for Parkinson's disease (PD), but the functions of most of them are unknown. Using assay for transposase-accessible chromatin (ATAC) and H3K27ac chromatin immunoprecipitation (ChIP) sequencing data, we identified 73 regulatory elements in microglia that overlap PD risk SNPs. To determine the target genes of a "risk enhancer" within intron two of SNCA, we used CRISPR-Cas9 to delete the open chromatin region where two PD risk SNPs reside. The loss of the enhancer led to reduced expression of multiple genes including SNCA and the adjacent gene MMRN1. It also led to expression changes of genes involved in glucose metabolism, a process that is known to be altered in PD patients. Our work expands the role of SNCA in PD and provides a connection between PD-associated genetic variants and underlying biology that points to a risk mechanism in microglia.

2.
Hum Mol Genet ; 32(1): 1-14, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35866299

ABSTRACT

One of the most significant risk variants for Parkinson's disease (PD), rs356182, is located at the PD-associated locus near the alpha-synuclein (α-syn) encoding gene, SNCA. SNCA-proximal variants, including rs356182, are thought to function in PD risk through enhancers via allele-specific regulatory effects on SNCA expression. However, this interpretation discounts the complex activity of genetic enhancers and possible non-conical functions of α-syn. Here we investigated a novel risk mechanism for rs356182. We use CRISPR-Cas9 in LUHMES cells, a model for dopaminergic midbrain neurons, to generate precise hemizygous lesions at rs356182. The PD-protective (A/-), PD-risk (G/-) and wild-type (A/G) clones were neuronally differentiated and then compared transcriptionally and morphologically. Among the affected genes was SNCA, whose expression was promoted by the PD-protective allele (A) and repressed in its absence. In addition to SNCA, hundreds of genes were differentially expressed and associated with neurogenesis and axonogenesis-an effect not typically ascribed to α-syn. We also found that the transcription factor FOXO3 specifically binds to the rs356182 A-allele in differentiated LUHMES cells. Finally, we compared the results from the rs356182-edited cells to our previously published knockouts of SNCA and found only minimal overlap between the sets of significant differentially expressed genes. Together, the data implicate a risk mechanism for rs356182 in which the risk-allele (G) is associated with abnormal neuron development, independent of SNCA expression. We speculate that these pathological effects manifest as a diminished population of dopaminergic neurons during development leading to the predisposition for PD later in life.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Cell Differentiation/genetics , Dopaminergic Neurons/metabolism , Gene Expression , Parkinson Disease/genetics , Parkinson Disease/metabolism
3.
Front Neurosci ; 16: 889802, 2022.
Article in English | MEDLINE | ID: mdl-35898413

ABSTRACT

Genome-wide association studies have consistently shown that the alpha-synuclein locus is significantly associated with Parkinson's disease. The mechanism by which this locus modulates the disease pathology and etiology remains largely under-investigated. This is due to the assumption that SNCA is the only driver of the functional aspects of several single nucleotide polymorphism (SNP) risk-signals at this locus. Recent evidence has shown that the risk associated with the top GWAS-identified variant within this locus is independent of SNCA expression, calling into question the validity of assigning function to the nearest gene, SNCA. In this review, we examine additional genes and risk variants present at the SNCA locus and how they may contribute to Parkinson's disease. Using the SNCA locus as an example, we hope to demonstrate that deeper and detailed functional validations are required for high impact disease-linked variants.

4.
Mol Cell Neurosci ; 119: 103702, 2022 03.
Article in English | MEDLINE | ID: mdl-35093507

ABSTRACT

As researchers grapple with the mechanisms and implications of alpha-synuclein (α-syn) in neuropathology, it is often forgotten that the function(s) of α-syn in healthy cells remain largely elusive. Previous work has relied on observing α-syn localization in the cell or using knockout mouse models. Here, we address the specific role of α-syn in human dopaminergic neurons by disrupting its gene (SNCA) in the human dopaminergic neuron cell line, LUHMES. SNCA-null cells were able to differentiate grossly normally and showed modest effects on gene expression. The effects on gene expression were monodirectional, resulting primarily in the significant decrease of expression for 401 genes, implicating them as direct, or indirect positive targets of α-syn. Gene ontological analysis of these genes showed enrichment in terms associated with proliferation, differentiation, and synapse activity. These results add to the tapestry of α-syn biological functions. SIGNIFICANCE STATEMENT: The normal functions of α-syn have remained controversial, despite its clear importance in Parkinson's Disease pathology, where it accumulates in Lewy bodies and contributes to neurodegeneration. Its name implies synaptic and nuclear functions, but how it participates at these locations has not been resolved. Via knock-out experiments in dopaminergic neurons, we implicate α-syn as a functional participant in synapse activity and in proliferation/differentiation, the latter being novel and provide insight into α-syn's role in neuronal development.


Subject(s)
Dopaminergic Neurons , Parkinson Disease , alpha-Synuclein , Animals , Cell Proliferation , Dopaminergic Neurons/metabolism , Gene Expression , Humans , Mice , Parkinson Disease/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
5.
Front Cell Neurosci ; 15: 759571, 2021.
Article in English | MEDLINE | ID: mdl-34671245

ABSTRACT

Alpha-synuclein accumulation in dopaminergic neurons is one of the primary features of Parkinson's disease (PD). Despite its toxic properties during PD, alpha-synuclein has some important physiological functions. Although the activity of the protein has been extensively studied in neurons, the protein is also expressed in other cell types including immune cells and glia. Genetic studies show that mutations in synuclein alpha (SNCA), the gene that encodes alpha-synuclein, and alterations in its expression levels are a significant risk factor for PD, which likely impact the functions of a broad range of cell types. The consequences of altered SNCA expression in other cell types is beginning to be explored. Microglia, the primary macrophage population in the Central Nervous System (CNS), for example, are affected by variations in alpha-synuclein levels and functions. Studies suggest that deviations of alpha-synuclein's normal activity influence hematopoiesis, the process that gives rise to microglia, and microglia's immune functions. Alpha-synuclein levels also dictate the efficiency of SNARE-mediated vesicle formation, which could influence autophagy and cytokine release in microglia. Starting from the time of conception, these effects could impact one's risk for developing PD. Further studies are needed to determine the physiological role of alpha-synuclein and how the protein is affected during PD in non-neuronal cells such as microglia. In this review we will discuss the known roles of alpha-synuclein in differentiation, immune responses, and vesicle formation, with insights into how abnormal alpha-synuclein expression and activity are linked to altered functions of microglia during PD.

6.
Brain Commun ; 3(3): fcab211, 2021.
Article in English | MEDLINE | ID: mdl-34557668

ABSTRACT

The lateralization of the human brain may provide clues into the pathogenesis and progression of neurodegenerative diseases. Though differing in their presentation and underlying pathologies, neurodegenerative diseases are all devastating and share an intriguing theme of asymmetrical pathology and clinical symptoms. Parkinson's disease, with its distinctive onset of motor symptoms on one side of the body, stands out in this regard, but a review of the literature reveals asymmetries in several other neurodegenerative diseases. Here, we review the lateralization of the structure and function of the healthy human brain and the common genetic and epigenetic patterns contributing to the development of asymmetry in health and disease. We specifically examine the role of asymmetry in Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and multiple sclerosis, and interrogate whether these imbalances may reveal meaningful clues about the origins of these diseases. We also propose several hypotheses for how lateralization may contribute to the distinctive and enigmatic features of asymmetry in neurodegenerative diseases, suggesting a role for asymmetry in the choroid plexus, neurochemistry, protein distribution, brain connectivity and the vagus nerve. Finally, we suggest how future studies may reveal novel insights into these diseases through the lens of asymmetry.

7.
NPJ Parkinsons Dis ; 6: 23, 2020.
Article in English | MEDLINE | ID: mdl-32964108

ABSTRACT

Genetic risk for complex diseases very rarely reflects only Mendelian-inherited phenotypes where single-gene mutations can be followed in families by linkage analysis. More commonly, a large set of low-penetrance, small effect-size variants combine to confer risk; they are normally revealed in genome-wide association studies (GWAS), which compare large population groups. Whereas Mendelian inheritance points toward disease mechanisms arising from the mutated genes, in the case of GWAS signals, the effector proteins and even general risk mechanism are mostly unknown. Instead, the utility of GWAS currently lies primarily in predictive and diagnostic information. Although an amazing body of GWAS-based knowledge now exists, we advocate for more funding towards the exploration of the fundamental biology in post-GWAS studies; this research will bring us closer to causality and risk gene identification. Using Parkinson's Disease as an example, we ask, how, where, and when do risk loci contribute to disease?

8.
Nat Neurosci ; 23(10): 1203-1214, 2020 10.
Article in English | MEDLINE | ID: mdl-32807949

ABSTRACT

Parkinson's disease (PD) pathogenesis may involve the epigenetic control of enhancers that modify neuronal functions. Here, we comprehensively examine DNA methylation at enhancers, genome-wide, in neurons of patients with PD and of control individuals. We find a widespread increase in cytosine modifications at enhancers in PD neurons, which is partly explained by elevated hydroxymethylation levels. In particular, patients with PD exhibit an epigenetic and transcriptional upregulation of TET2, a master-regulator of cytosine modification status. TET2 depletion in a neuronal cell model results in cytosine modification changes that are reciprocal to those observed in PD neurons. Moreover, Tet2 inactivation in mice fully prevents nigral dopaminergic neuronal loss induced by previous inflammation. Tet2 loss also attenuates transcriptional immune responses to an inflammatory trigger. Thus, widespread epigenetic dysregulation of enhancers in PD neurons may, in part, be mediated by increased TET2 expression. Decreased Tet2 activity is neuroprotective, in vivo, and may be a new therapeutic target for PD.


Subject(s)
DNA-Binding Proteins/genetics , Epigenesis, Genetic , Gene Expression Regulation , Neurons/metabolism , Neuroprotection , Parkinson Disease/genetics , Prefrontal Cortex/metabolism , Proto-Oncogene Proteins/genetics , Animals , Cell Line, Tumor , DNA Methylation , Dioxygenases , Epigenomics , Female , Humans , Male , Mice, Inbred C57BL , Mice, Knockout
9.
Cancer Epidemiol Biomarkers Prev ; 28(10): 1735-1745, 2019 10.
Article in English | MEDLINE | ID: mdl-31292138

ABSTRACT

BACKGROUND: Breast cancer genetic predisposition is governed by more than 142 loci as revealed by genome-wide association studies (GWAS). The functional contribution of these risk loci to breast cancer remains unclear, and additional post-GWAS analyses are required. METHODS: We identified active regulatory elements (enhancers, promoters, and chromatin organizing elements) by histone H3K27 acetylation and CTCF occupancy and determined the enrichment of risk variants at these sites. We compared these results with previously published data and for other cell lines, including human mammary epithelial cells, and related these data to gene expression. RESULTS: In terms of mapping accuracy and resolution, our data augment previous annotations of the MCF-7 epigenome. After intersection with GWAS risk variants, we found 39 enhancers and 15 CTCF occupancy sites that, between them, overlapped 96 breast cancer credible risk variants at 42 loci. These risk enhancers likely regulate the expression of dozens of genes, which are enriched for GO categories, including estrogen and prolactin signaling. CONCLUSIONS: Ten (of 142) breast cancer risk loci likely function via enhancers that are active in MCF-7 and are well suited to targeted manipulation in this system. In contrast, risk loci cannot be mapped to specific CTCF-binding sites, and the genes linked to risk CTCF sites did not show functional enrichment. The identity of risk enhancers and their associated genes suggests that some risk may function during later processes in cancer progression. IMPACT: Here, we report how the ER+ cell line MCF-7 can be used to dissect risk mechanisms for breast cancer.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , CCCTC-Binding Factor/genetics , MCF-7 Cells , Models, Genetic , Breast Neoplasms/pathology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Haplotypes , Humans , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Risk Factors
11.
J Natl Cancer Inst ; 111(2): 146-157, 2019 02 01.
Article in English | MEDLINE | ID: mdl-29917119

ABSTRACT

BACKGROUND: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk. METHODS: We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided. RESULTS: The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0. CONCLUSIONS: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening.


Subject(s)
Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Ethnicity/genetics , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Case-Control Studies , Ethnicity/statistics & numerical data , Follow-Up Studies , Genotype , Humans , Prognosis , United States/epidemiology
12.
Curr Genomics ; 20(5): 322-324, 2019 Aug.
Article in English | MEDLINE | ID: mdl-32476988

ABSTRACT

This opinion paper highlights strategies for a better understanding of non-Mendelian genetic risk that was revealed by genome-wide association studies (GWAS) of complex diseases. The genetic risk resides predominantly in non-coding regulatory DNA, such as in enhancers. The identification of mechanisms, the causal variants (mainly SNPs), and their target genes are, however, not always apparent but are likely involved in a network of risk determinants; the identification presents a bottle-neck in the full understanding of the genetics of complex phenotypes. Here, we propose strategies to identify functional SNPs and link risk enhancers with their target genes. The strategies are 1) identifying fine-mapped SNPs that break/form response elements within chromatin bio-features in relevant cell types 2) considering the nearest gene on linear DNA, 3) analyzing eQTLs, 4) mapping differential DNA methylation regions and relating them to gene expression, 5) employing genomic editing with CRISPR/cas9 and 6) identifying topological associated chromatin domains using chromatin conformation capture.

13.
Cancer Res ; 79(3): 467-481, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30487138

ABSTRACT

Genome-wide association studies have identified 40 ovarian cancer risk loci. However, the mechanisms underlying these associations remain elusive. In this study, we conducted a two-pronged approach to identify candidate causal SNPs and assess underlying biological mechanisms at chromosome 9p22.2, the first and most statistically significant associated locus for ovarian cancer susceptibility. Three transcriptional regulatory elements with allele-specific effects and a scaffold/matrix attachment region were characterized and, through physical DNA interactions, BNC2 was established as the most likely target gene. We determined the consensus binding sequence for BNC2 in vitro, verified its enrichment in BNC2 ChIP-seq regions, and validated a set of its downstream target genes. Fine-mapping by dense regional genotyping in over 15,000 ovarian cancer cases and 30,000 controls identified SNPs in the scaffold/matrix attachment region as among the most likely causal variants. This study reveals a comprehensive regulatory landscape at 9p22.2 and proposes a likely mechanism of susceptibility to ovarian cancer. SIGNIFICANCE: Mapping the 9p22.2 ovarian cancer risk locus identifies BNC2 as an ovarian cancer risk gene.See related commentary by Choi and Brown, p. 439.


Subject(s)
Carcinoma, Ovarian Epithelial/genetics , Chromosomes, Human, Pair 9 , Ovarian Neoplasms/genetics , Base Sequence , Cell Cycle Proteins/genetics , Cell Line, Tumor , Chromosome Mapping , Cystadenocarcinoma, Serous/genetics , DNA, Neoplasm/genetics , DNA-Binding Proteins/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , HEK293 Cells , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide
14.
Genome Biol ; 19(1): 160, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30296942

ABSTRACT

BACKGROUND: Recent genome-wide association studies (GWAS) have identified more than 100 loci associated with increased risk of prostate cancer, most of which are in non-coding regions of the genome. Understanding the function of these non-coding risk loci is critical to elucidate the genetic susceptibility to prostate cancer. RESULTS: We generate genome-wide regulatory element maps and performed genome-wide chromosome confirmation capture assays (in situ Hi-C) in normal and tumorigenic prostate cells. Using this information, we annotate the regulatory potential of 2,181 fine-mapped prostate cancer risk-associated SNPs and predict a set of target genes that are regulated by prostate cancer risk-related H3K27Ac-mediated loops. We next identify prostate cancer risk-associated CTCF sites involved in long-range chromatin loops. We use CRISPR-mediated deletion to remove prostate cancer risk-associated CTCF anchor regions and the CTCF anchor regions looped to the prostate cancer risk-associated CTCF sites, and we observe up to 100-fold increases in expression of genes within the loops when the prostate cancer risk-associated CTCF anchor regions are deleted. CONCLUSIONS: We identify GWAS risk loci involved in long-range loops that function to repress gene expression within chromatin loops. Our studies provide new insights into the genetic susceptibility to prostate cancer.


Subject(s)
CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Deletion , Prostatic Neoplasms/genetics , Acetylation , Cell Line, Tumor , Enhancer Elements, Genetic/genetics , Histones/metabolism , Humans , Lysine/metabolism , Male , Polymorphism, Single Nucleotide/genetics , Risk Factors , Small-Conductance Calcium-Activated Potassium Channels/genetics , Up-Regulation/genetics
15.
Neurobiol Dis ; 114: 53-64, 2018 06.
Article in English | MEDLINE | ID: mdl-29486295

ABSTRACT

In genome-wide association studies of complex diseases, many risk polymorphisms are found to lie in non-coding DNA and likely confer risk through allele-dependent differences in gene regulatory elements. However, because distal regulatory elements can alter gene expression at various distances on linear DNA, the identity of relevant genes is unknown for most risk loci. In Parkinson's disease, at least some genetic risk is likely intrinsic to a neuronal subpopulation of cells in the brain regions affected. In order to compare neuron-relevant methods of pairing risk polymorphisms to target genes as well as to further characterize a single-cell model of a neurodegenerative disease, we used the portionally-dopaminergic, neuronal, mesencephalic-derived cell line LUHMES to dissect differentiation-specific mechanisms of gene expression. We compared genome-wide gene expression in undifferentiated and differentiated cells with genome-wide histone H3K27ac and CTCF-bound regions. Whereas promoters and CTCF binding were largely consistent between differentiated and undifferentiated cells, enhancers were mostly unique. We matched the differentiation-specific appearance or disappearance of enhancers with changes in gene expression and identified 22,057 enhancers paired with 6388 differentially expressed genes by proximity. These enhancers are enriched with at least 13 transcription factor response elements, driving a cluster of genes involved in neurogenesis. We show that differentiated LUHMES cells, but not undifferentiated cells, show enrichment for PD-risk SNPs. Candidate genes for these loci are largely unrelated, though a subset is linked to synaptic vesicle cycling and transport, implying that PD-related disruption of these pathways is intrinsic to dopaminergic neurons.


Subject(s)
Genetic Predisposition to Disease/genetics , Mesencephalon/pathology , Neurons/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Amino Acid Sequence/genetics , Cell Line , Humans
16.
J Parkinsons Dis ; 8(1): 13-15, 2018.
Article in English | MEDLINE | ID: mdl-29254107

ABSTRACT

Genome-wide association studies of Parkinson's disease have revealed polymorphic variants associated with closely mapped genes of interest. We propose here that those genes may only represent the tip of an iceberg of regulatory effects and do not necessary reflect disease relevance. To usefully interpret a risk locus, one needs to consider 5 dimensions of information, which represent the three-dimensional structure of chromatin (dimensions #1- 3), which is locally variable across time (dimension #4), and, most importantly, dependent on cell type and context (dimension #5).


Subject(s)
Chromatin/genetics , Parkinson Disease/genetics , Chromatin/ultrastructure , Enhancer Elements, Genetic/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Quantitative Trait Loci , Risk Factors , Time Factors
17.
Cancer Epidemiol Biomarkers Prev ; 26(7): 1016-1026, 2017 07.
Article in English | MEDLINE | ID: mdl-28377418

ABSTRACT

Background: Genome-wide association studies have identified approximately 100 common genetic variants associated with breast cancer risk, the majority of which were discovered in women of European ancestry. Because of different patterns of linkage disequilibrium, many of these genetic markers may not represent signals in populations of African ancestry.Methods: We tested 74 breast cancer risk variants and conducted fine-mapping of these susceptibility regions in 6,522 breast cancer cases and 7,643 controls of African ancestry from three genetic consortia (AABC, AMBER, and ROOT).Results: Fifty-four of the 74 variants (73%) were found to have ORs that were directionally consistent with those previously reported, of which 12 were nominally statistically significant (P < 0.05). Through fine-mapping, in six regions (3p24, 12p11, 14q13, 16q12/FTO, 16q23, 19p13), we observed seven markers that better represent the underlying risk variant for overall breast cancer or breast cancer subtypes, whereas in another two regions (11q13, 16q12/TOX3), we identified suggestive evidence of signals that are independent of the reported index variant. Overlapping chromatin features and regulatory elements suggest that many of the risk alleles lie in regions with biological functionality.Conclusions: Through fine-mapping of known susceptibility regions, we have revealed alleles that better characterize breast cancer risk in women of African ancestry.Impact: The risk alleles identified represent genetic markers for modeling and stratifying breast cancer risk in women of African ancestry. Cancer Epidemiol Biomarkers Prev; 26(7); 1016-26. ©2017 AACR.


Subject(s)
Biomarkers, Tumor/genetics , Black or African American/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Alleles , Breast Neoplasms/pathology , Case-Control Studies , Chromosome Mapping , Female , Genetic Loci , Humans , Polymorphism, Single Nucleotide , Receptors, Estrogen/metabolism , Risk Factors
18.
PLoS One ; 12(4): e0175882, 2017.
Article in English | MEDLINE | ID: mdl-28407015

ABSTRACT

Genome-wide association studies (GWAS) have linked dozens of single nucleotide polymorphisms (SNPs) with Parkinson's disease (PD) risk. Ascertaining the functional and eventual causal mechanisms underlying these relationships has proven difficult. The majority of risk SNPs, and nearby SNPs in linkage disequilibrium (LD), are found in intergenic or intronic regions and confer risk through allele-dependent expression of multiple unknown target genes. Combining GWAS results with publicly available GTEx data, generated through eQTL (expression quantitative trait loci) identification studies, enables a direct association of SNPs to gene expression levels and aids in narrowing the large population of potential genetic targets for hypothesis-driven experimental cell biology. Separately, overlapping of SNPs with putative enhancer segmentations can strengthen target filtering. We report here the results of analyzing 7,607 PD risk SNPs along with an additional 23,759 high linkage disequilibrium-associated variants paired with eQTL gene expression. We found that enrichment analysis on the set of genes following target filtering pointed to a single large LD block at 6p21 that contained multiple HLA-MHC-II genes. These MHC-II genes remain associated with PD when the genes were filtered for correlation between GWAS significance and eQTL levels, strongly indicating a direct effect on PD etiology.


Subject(s)
Histocompatibility Antigens Class II/genetics , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Gene Expression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Quantitative Trait Loci
19.
Cancer Epidemiol Biomarkers Prev ; 26(1): 126-135, 2017 01.
Article in English | MEDLINE | ID: mdl-27697780

ABSTRACT

BACKGROUND: Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers, and cancer-related traits. METHODS: The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers, and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. RESULTS: The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. CONCLUSIONS: Results from these analyses will enable researchers to identify new susceptibility loci, perform fine-mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental, and lifestyle-related exposures. IMPACT: Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. Cancer Epidemiol Biomarkers Prev; 26(1); 126-35. ©2016 AACR.


Subject(s)
Genetic Predisposition to Disease/epidemiology , Genetic Variation/genetics , Genome-Wide Association Study/methods , Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Female , Genotype , Humans , Male , Neoplasms/epidemiology , Neoplasms/physiopathology , Prevalence , Prognosis , Risk Assessment , Selection, Genetic
20.
Article in English | MEDLINE | ID: mdl-27833659

ABSTRACT

BACKGROUND: Although technological advances now allow increased tumor profiling, a detailed understanding of the mechanisms leading to the development of different cancers remains elusive. Our approach toward understanding the molecular events that lead to cancer is to characterize changes in transcriptional regulatory networks between normal and tumor tissue. Because enhancer activity is thought to be critical in regulating cell fate decisions, we have focused our studies on distal regulatory elements and transcription factors that bind to these elements. RESULTS: Using DNA methylation data, we identified more than 25,000 enhancers that are differentially activated in breast, prostate, and kidney tumor tissues, as compared to normal tissues. We then developed an analytical approach called Tracing Enhancer Networks using Epigenetic Traits that correlates DNA methylation levels at enhancers with gene expression to identify more than 800,000 genome-wide links from enhancers to genes and from genes to enhancers. We found more than 1200 transcription factors to be involved in these tumor-specific enhancer networks. We further characterized several transcription factors linked to a large number of enhancers in each tumor type, including GATA3 in non-basal breast tumors, HOXC6 and DLX1 in prostate tumors, and ZNF395 in kidney tumors. We showed that HOXC6 and DLX1 are associated with different clusters of prostate tumor-specific enhancers and confer distinct transcriptomic changes upon knockdown in C42B prostate cancer cells. We also discovered de novo motifs enriched in enhancers linked to ZNF395 in kidney tumors. CONCLUSIONS: Our studies characterized tumor-specific enhancers and revealed key transcription factors involved in enhancer networks for specific tumor types and subgroups. Our findings, which include a large set of identified enhancers and transcription factors linked to those enhancers in breast, prostate, and kidney cancers, will facilitate understanding of enhancer networks and mechanisms leading to the development of these cancers.


Subject(s)
Enhancer Elements, Genetic/genetics , Epigenomics , Transcription Factors/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , DNA Methylation , DNA-Binding Proteins/genetics , Female , GATA3 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Histones/genetics , Histones/metabolism , Homeodomain Proteins/antagonists & inhibitors , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA Interference , RNA, Small Interfering/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...