Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Anal Chem ; 92(23): 15280-15284, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33170640

ABSTRACT

We present an automated parahydrogen generator (ParaSun) for clinical-scale applications in parahydrogen-induced polarization (PHIP) and signal amplification by reversible exchange (SABRE) at high pressures. The device employs a vacuum-pumped, Sunpower cryo-cooler (typically employed for cooling cellular network antennas) to achieve up to ∼87% parahydrogen enrichment at a temperature as low as ∼40 K and a maximum outlet pressure of ∼490 PSI. The device reaches the target temperature set-point in under 1 h. It employs a FeO(OH) catalyst for the ortho- to para-state conversion. A mass-flow controller (MFC) facilitates the controlled flow of H2 gas at a rate of 150 standard cubic centimeters per minute (sccm). This design bridges the gap between rudimentary 50% enrichment liquid-N2 baths and far costlier, near-unity-enrichment configurations employing high-H2 throughputs and <25 K temperatures. The design presented here should be of interest for those pursuing a wide variety of PHIP applications, including those involving the production of inhalable or injectable hyperpolarized contrast agents for biomedical imaging.


Subject(s)
Hydrogen/chemistry , Pressure , Magnetic Resonance Spectroscopy , Temperature , Vacuum
2.
J Magn Reson ; 319: 106813, 2020 10.
Article in English | MEDLINE | ID: mdl-32932118

ABSTRACT

We present a second-generation open-source automated batch-mode 129Xe hyperpolarizer (XeUS GEN-2), designed for clinical-scale hyperpolarized (HP) 129Xe production via spin-exchange optical pumping (SEOP) in the regimes of high Xe density (0.66-2.5 atm partial pressure) and resonant photon flux (~170 W, Δλ = 0.154 nm FWHM), without the need for cryo-collection typically employed by continuous-flow hyperpolarizers. An Arduino micro-controller was used for hyperpolarizer operation. Processing open-source software was employed to program a custom graphical user interface (GUI), capable of remote automation. The Arduino Integrated Development Environment (IDE) was used to design a variety of customized automation sequences such as temperature ramping, NMR signal acquisition, and SEOP cell refilling for increased reliability. A polycarbonate 3D-printed oven equipped with a thermo-electric cooler/heater provides thermal stability for SEOP for both binary (Xe/N2) and ternary (4He-containing) SEOP cell gas mixtures. Quantitative studies of the 129Xe hyperpolarization process demonstrate that near-unity polarization can be achieved in a 0.5 L SEOP cell. For example, %PXe of 93.2 ± 2.9% is achieved at 0.66 atm Xe pressure with polarization build-up rate constant γSEOP = 0.040 ± 0.005 min-1, giving a max dose equivalent ≈ 0.11 L/h 100% hyperpolarized, 100% enriched 129Xe; %PXe of 72.6 ± 1.4% is achieved at 1.75 atm Xe pressure with γSEOP of 0.041 ± 0.001 min-1, yielding a corresponding max dose equivalent of 0.27 L/h. Quality assurance studies on this device have demonstrated the potential to refill SEOP cells hundreds of times without significant losses in performance, with average %PXe = 71.7%, (standard deviation σP = 1.52%) and mean polarization lifetime T1 = 90.5 min, (standard deviation σT = 10.3 min) over the first ~200 gas mixture refills, with sufficient performance maintained across a further ~700 refills. These findings highlight numerous technological developments and have significant translational relevance for efficient production of gaseous HP 129Xe contrast agents for use in clinical imaging and bio-sensing techniques.


Subject(s)
Magnetic Resonance Spectroscopy , Radiopharmaceuticals/chemical synthesis , Xenon Isotopes/chemical synthesis , Automation , Reproducibility of Results , Software
3.
J Magn Reson ; 315: 106739, 2020 06.
Article in English | MEDLINE | ID: mdl-32408239

ABSTRACT

We present studies of spin-exchange optical pumping (SEOP) using ternary xenon-nitrogen-helium gas mixtures at high xenon partial pressures (up to 1330 Torr partial pressure at loading, out of 2660 Torr total pressure) in a 500-mL volume SEOP cell, using two automated batch-mode clinical-scale 129Xe hyperpolarizers operating under continuous high-power (~170 W) pump laser irradiation. In this pilot study, we explore SEOP in gas mixtures with up to 45% 4He content under a wide range of experimental conditions. When an aluminum jacket cooling/heating design was employed (GEN-3 hyperpolarizer), 129Xe polarization (%PXe) of 55.9 ± 0.9% was observed with mono-exponential build-up rate γSEOP of 0.049 ± 0.001 min-1 for the 4He-rich mixture (1000 Torr Xe/900 Torr He, 100 Torr N2), compared to %PXe of 49.3 ± 3.3% at γSEOP of 0.035 ± 0.004 min-1 for the N2-rich gas mixture (1000 Torr Xe/100 Torr He, 900 Torr N2). When forced-air cooling/heating was used (GEN-2 hyperpolarizer), %PXe of 83.9 ± 2.7% was observed at γSEOP of 0.045 ± 0.005 min-1 for the 4He-rich mixture (1000 Torr Xe/900 Torr He, 100 Torr N2), compared to %PXe of 73.5 ± 1.3% at γSEOP of 0.028 ± 0.001 min-1 for the N2-rich gas mixture (1000 Torr Xe and 1000 Torr N2). Additionally, %PXe of 72.6 ± 1.4% was observed at a build-up rate γSEOP of 0.041 ± 0.003 min-1 for a super-high-density 4He-rich mixture (1330 Torr Xe/1200 Torr 4He/130 Torr N2), compared to %PXe = 56.6 ± 1.3% at a build-up rate of γSEOP of 0.034 ± 0.002 min-1 for an N2-rich mixture (1330 Torr Xe/1330 Torr N2) using forced air cooling/heating. The observed SEOP hyperpolarization performance under these conditions corresponds to %PXe improvement by a factor of 1.14 ± 0.04 at 1000 Torr Xe density and by up to a factor of 1.28 ± 0.04 at 1330 Torr Xe density at improved SEOP build-up rates by factors of 1.61 ± 0.18 and 1.21 ± 0.11 respectively. Record %PXe levels have been obtained here: 83.9 ± 2.7% at 1000 Torr Xe partial pressure and 72.6 ± 1.4% at 1330 Torr Xe partial pressure. In addition to improved thermal stability for SEOP, the use of 4He-rich gas mixtures also reduces the overall density of produced inhalable HP contrast agents; this property may be desirable for HP 129Xe inhalation by human subjects in clinical settings-especially in populations with heavily impaired lung function. The described approach should enjoy ready application in the production of inhalable 129Xe contrast agent with near-unity 129Xe nuclear spin polarization.

4.
Anal Chem ; 92(6): 4309-4316, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32073251

ABSTRACT

We present spin-exchange optical pumping (SEOP) using a third-generation (GEN-3) automated batch-mode clinical-scale 129Xe hyperpolarizer utilizing continuous high-power (∼170 W) pump laser irradiation and a novel aluminum jacket design for rapid temperature ramping of xenon-rich gas mixtures (up to 2 atm partial pressure). The aluminum jacket design is capable of heating SEOP cells from ambient temperature (typically 25 °C) to 70 °C (temperature of the SEOP process) in 4 min, and perform cooling of the cell to the temperature at which the hyperpolarized gas mixture can be released from the hyperpolarizer (with negligible amounts of Rb metal leaving the cell) in approximately 4 min, substantially faster (by a factor of 6) than previous hyperpolarizer designs relying on air heat exchange. These reductions in temperature cycling time will likely be highly advantageous for the overall increase of production rates of batch-mode (i.e., stopped-flow) 129Xe hyperpolarizers, which is particularly beneficial for clinical applications. The additional advantage of the presented design is significantly improved thermal management of the SEOP cell. Accompanying the heating jacket design and performance, we also evaluate the repeatability of SEOP experiments conducted using this new architecture, and present typically achievable hyperpolarization levels exceeding 40% at exponential build-up rates on the order of 0.1 min-1.

5.
J Magn Reson ; 312: 106686, 2020 03.
Article in English | MEDLINE | ID: mdl-32006793

ABSTRACT

Spin-exchange optical pumping (SEOP) can enhance the NMR sensitivity of noble gases by up to five orders of magnitude at Tesla-strength magnetic fields. SEOP-generated hyperpolarised (HP) 129Xe is a promising contrast agent for lung imaging but an ongoing barrier to widespread clinical usage has been economical production of sufficient quantities with high 129Xe polarisation. Here, the 'standard model' of SEOP, which was previously used in the optimisation of continuous-flow 129Xe polarisers, is modified for validation against two Xe-rich stopped-flow SEOP datasets. We use this model to examine ways to increase HP Xe production efficiency in stopped-flow 129Xe polarisers and provide further insight into the underlying physics of Xe-rich stopped-flow SEOP at high laser fluxes.


Subject(s)
Contrast Media/chemistry , Lung/diagnostic imaging , Magnetic Resonance Spectroscopy/methods , Rubidium/chemistry , Xenon Isotopes/chemistry , Computer Simulation , Datasets as Topic , Lasers , Photons , Sensitivity and Specificity
6.
J Phys Chem C Nanomater Interfaces ; 121(28): 15304-15309, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-29238438

ABSTRACT

The successful transfer of parahydrogen-induced polarization to 15N spins using heterogeneous catalysts in aqueous solutions was demonstrated. Hydrogenation of a synthesized unsaturated 15N-labeled precursor (neurine) with parahydrogen (p-H2) over Rh/TiO2 heterogeneous catalysts yielded a hyperpolarized structural analog of choline. As a result, 15N polarization enhancements of over two orders of magnitude were achieved for the 15N-ethyl trimethyl ammonium ion product in deuterated water at elevated temperatures. Enhanced 15N NMR spectra were successfully acquired at 9.4 T and 0.05 T. Importantly, long hyperpolarization lifetimes were observed at 9.4 T, with a 15N T1 of ~6 min for the product molecules, and the T1 of the deuterated form exceeded 8 min. Taken together, these results show that this approach for generating hyperpolarized species with extended lifetimes in aqueous, biologically compatible solutions is promising for various biomedical applications.

7.
J Magn Reson ; 284: 115-124, 2017 11.
Article in English | MEDLINE | ID: mdl-29028543

ABSTRACT

Applications of parahydrogen induced polarization (PHIP) often warrant conversion of the chemically-synthesized singlet-state spin order into net heteronuclear magnetization. In order to obtain optimal yields from the overall hyperpolarization process, catalytic hydrogenation must be tightly synchronized to subsequent radiofrequency (RF) transformations of spin order. Commercial NMR consoles are designed to synchronize applied waves on multiple channels and consequently are well-suited as controllers for these types of hyperpolarization experiments that require tight coordination of RF and non-RF events. Described here is a PHIP instrument interfaced to a portable NMR console operating with a static field electromagnet in the milliTesla regime. In addition to providing comprehensive control over chemistry and RF events, this setup condenses the PHIP protocol into a pulse-program that in turn can be readily shared in the manner of traditional pulse sequences. In this device, a TTL multiplexer was constructed to convert spectrometer TTL outputs into 24 VDC signals. These signals then activated solenoid valves to control chemical shuttling and reactivity in PHIP experiments. Consolidating these steps in a pulse-programming environment speeded calibration and improved quality assurance by enabling the B0/B1 fields to be tuned based on the direct acquisition of thermally polarized and hyperpolarized NMR signals. Performance was tested on the parahydrogen addition product of 2-hydroxyethyl propionate-1-13C-d3, where the 13C polarization was estimated to be P13C=20±2.5% corresponding to 13C signal enhancement approximately 25 million-fold at 9.1 mT or approximately 77,000-fold 13C enhancement at 3 T with respect to thermally induced polarization at room temperature.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Magnets , Electromagnetic Fields , Hydrogen/chemistry , Hydrogenation , Magnetic Resonance Spectroscopy/instrumentation , Radio Waves , Reproducibility of Results
8.
J Magn Reson ; 281: 246-252, 2017 08.
Article in English | MEDLINE | ID: mdl-28651245

ABSTRACT

High-resolution 13C NMR spectroscopy of hyperpolarized succinate-1-13C-2,3-d2 is reported in vitro and in vivo using a clinical-scale, biplanar (80cm-gap) 48.7mT permanent magnet with a high homogeneity magnetic field. Non-localized 13C NMR spectra were recorded at 0.52MHz resonance frequency over the torso of a tumor-bearing mouse every 2s. Hyperpolarized 13C NMR signals with linewidths of ∼3Hz (corresponding to ∼6ppm) were recorded in vitro (2mL in a syringe) and in vivo (over a mouse torso). Comparison of the full width at half maximum (FWHM) for 13C NMR spectra acquired at 48.7mT and at 4.7T in a small-animal MRI scanner demonstrates a factor of ∼12 improvement for the 13C resonance linewidth attainable at 48.7mT compared to that at 4.7T in vitro. 13C hyperpolarized succinate-1-13C resonance linewidths in vivo are at least one order of magnitude narrower at 48.7mT compared to those observed in high-field (≥3T) studies employing HP contrast agents. The demonstrated high-resolution 13C in vivo spectroscopy could be useful for high-sensitivity spectroscopic studies involving monitoring HP agent uptake or detecting metabolism using HP contrast agents with sufficiently large 13C chemical shift differences.


Subject(s)
Electromagnetic Fields , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Animals , Carbon Isotopes , Cell Line, Tumor , Contrast Media/administration & dosage , Female , Injections, Intravenous , Mice , Mice, Nude , Neoplasms, Experimental/diagnostic imaging , Tail/blood supply , Veins
9.
J Magn Reson ; 276: 78-85, 2017 03.
Article in English | MEDLINE | ID: mdl-28152435

ABSTRACT

When parahydrogen reacts with propylene in low magnetic fields (e.g., 0.05T), the reaction product propane develops an overpopulation of pseudo-singlet nuclear spin states. We studied how the Spin-Lock Induced Crossing (SLIC) technique can be used to convert these pseudo-singlet spin states of hyperpolarized gaseous propane into observable magnetization and to detect 1H NMR signal directly at 0.05T. The theoretical simulation and experimental study of the NMR signal dependence on B1 power (SLIC amplitude) exhibits a well-resolved dispersion, which is induced by the spin-spin couplings in the eight-proton spin system of propane. We also measured the exponential decay time constants (TLLSS or TS) of these pseudo-singlet long-lived spin states (LLSS) by varying the time between hyperpolarized propane production and SLIC detection. We have found that, on average, TS is approximately 3 times longer than the corresponding T1 value under the same conditions in the range of pressures studied (up to 7.6atm). Moreover, TS may exceed 13s at pressures above 7atm in the gas phase. These results are in agreement with the previous reports, and they corroborate a great potential of long-lived hyperpolarized propane as an inhalable gaseous contrast agent for lung imaging and as a molecular tracer to study porous media using low-field NMR and MRI.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Propane/chemistry , Computer Simulation , Contrast Media , Electromagnetic Fields , Gases/chemistry , Magnetic Resonance Imaging , Pressure , Protons , Signal Processing, Computer-Assisted , Xenon Isotopes
10.
Chemistry ; 23(4): 725-751, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27711999

ABSTRACT

Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.

11.
ChemistrySelect ; 1(10): 2552-2555, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27500206

ABSTRACT

NMR hyperpolarization via Signal Amplification by Reversible Exchange (SABRE) was employed to investigate the feasibility of enhancing the NMR detection sensitivity of sulfur-heterocycles (specifically 2-methylthiophene and dibenzothiophenes), a family of compounds typically found in petroleum and refined petroleum products. SABRE hyperpolarization of sulfur-heterocycles (conducted in seconds) offers potential advantages of providing structural information about sulfur-containing contaminants in petroleum, thereby informing petroleum purification and refining to minimize sulfur content in refined products such as gasoline. Moreover, NMR spectroscopy sensitivity gains endowed by hyperpolarization potentially allows for performing structural assays using inexpensive, low-magnetic-field (ca. 1 T) high-resolution NMR spectrometers ideally suited for industrial applications in the field.

12.
Anal Chem ; 88(16): 8279-88, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27478927

ABSTRACT

An open-source hyperpolarizer producing (13)C hyperpolarized contrast agents using parahydrogen induced polarization (PHIP) for biomedical and other applications is presented. This PHIP hyperpolarizer utilizes an Arduino microcontroller in conjunction with a readily modified graphical user interface written in the open-source processing software environment to completely control the PHIP hyperpolarization process including remotely triggering an NMR spectrometer for efficient production of payloads of hyperpolarized contrast agent and in situ quality assurance of the produced hyperpolarization. Key advantages of this hyperpolarizer include: (i) use of open-source software and hardware seamlessly allowing for replication and further improvement as well as readily customizable integration with other NMR spectrometers or MRI scanners (i.e., this is a multiplatform design), (ii) relatively low cost and robustness, and (iii) in situ detection capability and complete automation. The device performance is demonstrated by production of a dose (∼2-3 mL) of hyperpolarized (13)C-succinate with %P13C ∼ 28% and 30 mM concentration and (13)C-phospholactate at %P13C ∼ 15% and 25 mM concentration in aqueous medium. These contrast agents are used for ultrafast molecular imaging and spectroscopy at 4.7 and 0.0475 T. In particular, the conversion of hyperpolarized (13)C-phospholactate to (13)C-lactate in vivo is used here to demonstrate the feasibility of ultrafast multislice (13)C MRI after tail vein injection of hyperpolarized (13)C-phospholactate in mice.


Subject(s)
Contrast Media/metabolism , Hydrogen/chemistry , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Animals , Automation , Carbon Isotopes/chemistry , Catalysis , Contrast Media/chemistry , Lactic Acid/metabolism , Mice , Mice, Nude , Software , Succinates/chemistry , Succinates/metabolism , Water/chemistry
13.
Chemphyschem ; 17(21): 3395-3398, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27459542

ABSTRACT

We report on a simple approach for efficient NMR proton hyperpolarization of propane using the parahydrogen-induced polarization (PHIP) technique, which yielded ≈6.2 % proton polarization using ≈80 % parahydrogen, a record level achieved with any hyperpolarization technique for propane. Unlike in previously developed approaches designed for continuous-flow operation, where reactants (propene and parahydrogen) are simultaneously loaded for homogeneous or heterogeneous pairwise addition of parahydrogen, here a batch-mode method is applied: propene is first loaded into the catalyst-containing solution, which is followed by homogeneous hydrogenation via parahydrogen bubbling delivered at ≈7.1 atm. The achieved nuclear spin polarization of this contrast agent potentially useful for pulmonary imaging is approximately two orders of magnitude greater than that achieved in the continuous-flow homogeneous catalytic hydrogenation, and a factor of 3-10 more efficient compared to the typical results of heterogeneous continuous-flow hydrogenations.

14.
ACS Sens ; 1(6): 640-644, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27379344

ABSTRACT

15N nuclear spins of imidazole-15N2 were hyperpolarized using NMR signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH). A 15N NMR signal enhancement of ∼2000-fold at 9.4 T is reported using parahydrogen gas (∼50% para-) and ∼0.1 M imidazole-15N2 in methanol:aqueous buffer (∼1:1). Proton binding to a 15N site of imidazole occurs at physiological pH (pKa ∼ 7.0), and the binding event changes the 15N isotropic chemical shift by ∼30 ppm. These properties are ideal for in vivo pH sensing. Additionally, imidazoles have low toxicity and are readily incorporated into a wide range of biomolecules. 15N-Imidazole SABRE-SHEATH hyperpolarization potentially enables pH sensing on scales ranging from peptide and protein molecules to living organisms.

15.
J Am Chem Soc ; 138(26): 8080-3, 2016 07 06.
Article in English | MEDLINE | ID: mdl-27321159

ABSTRACT

Direct NMR hyperpolarization of naturally abundant (15)N sites in metronidazole is demonstrated using SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei). In only a few tens of seconds, nuclear spin polarization P(15)N of up to ∼24% is achieved using parahydrogen with 80% para fraction corresponding to P(15)N ≈ 32% if ∼100% parahydrogen were employed (which would translate to a signal enhancement of ∼0.1-million-fold at 9.4 T). In addition to this demonstration on the directly binding (15)N site (using J(2)H-(15)N), we also hyperpolarized more distant (15)N sites in metronidazole using longer-range spin-spin couplings (J(4)H-(15)N and J(5)H-(15)N). Taken together, these results significantly expand the range of molecular structures and sites amenable to hyperpolarization via low-cost parahydrogen-based methods. In particular, hyperpolarized nitroimidazole and its derivatives have powerful potential applications such as direct in vivo imaging of mechanisms of action or hypoxia sensing.


Subject(s)
Anti-Bacterial Agents/chemistry , Metronidazole/chemistry , Molecular Probes/chemistry , Tumor Hypoxia , Anti-Bacterial Agents/metabolism , Kinetics , Magnetic Resonance Spectroscopy , Metronidazole/metabolism , Molecular Probes/metabolism
16.
J Phys Chem C Nanomater Interfaces ; 120(22): 12149-12156, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27350846

ABSTRACT

Two synthetic strategies are investigated for the preparation of water-soluble iridium-based catalysts for NMR signal amplification by reversible exchange (SABRE). In one approach, PEGylation of a variant N-heterocyclic carbene provided a novel catalyst with excellent water solubility. However, while SABRE-active in ethanol solutions, the catalyst lost activity in >50% water. In a second approach, synthesis of a novel di-iridium complex precursor where the cyclooctadiene (COD) rings have been replaced by CODDA (1,2-dihydroxy-3,7-cyclooctadiene) leads to the creation of a catalyst [IrCl(CODDA)IMes] that can be dissolved and activated in water-enabling aqueous SABRE in a single step, without need for either an organic cosolvent or solvent removal followed by aqueous reconstitution. The potential utility of the CODDA catalyst for aqueous SABRE is demonstrated with the ∼(-)32-fold enhancement of 1H signals of pyridine in water with only 1 atm of parahydrogen.

17.
Angew Chem Int Ed Engl ; 55(20): 6071-4, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27061815

ABSTRACT

A scalable and versatile methodology for production of vinylated carboxylic compounds with (13) C isotopic label in C1 position is described. It allowed synthesis of vinyl acetate-1-(13) C, which is a precursor for preparation of (13) C hyperpolarized ethyl acetate-1-(13) C, which provides a convenient vehicle for potential in vivo delivery of hyperpolarized acetate to probe metabolism in living organisms. Kinetics of vinyl acetate molecular hydrogenation and polarization transfer from para-hydrogen to (13) C via magnetic field cycling were investigated. Nascent proton nuclear spin polarization (%PH ) of ca. 3.3 % and carbon-13 polarization (%P13C ) of ca. 1.8 % were achieved in ethyl acetate utilizing 50 % para-hydrogen corresponding to ca. 50 % polarization transfer efficiency. The use of nearly 100% para-hydrogen and the improvements of %PH of para-hydrogen-nascent protons may enable production of (13) C hyperpolarized contrast agents with %P13C of 20-50 % in seconds using this chemistry.


Subject(s)
Acetates/chemical synthesis , Hydrogen/chemistry , Acetates/chemistry , Carbon Isotopes/chemistry , Catalysis , Coordination Complexes/chemistry , Isotope Labeling , Magnetic Resonance Spectroscopy , Rhodium/chemistry
18.
J Phys Chem C Nanomater Interfaces ; 120(51): 29098-29106, 2016 Dec 29.
Article in English | MEDLINE | ID: mdl-28066517

ABSTRACT

Parahydrogen-induced polarization (PHIP) is an NMR hyperpolarization technique that increases nuclear spin polarization by orders of magnitude, and it is particularly well-suited to study hydrogenation reactions. However, the use of high-field NMR spectroscopy is not always possible, especially in the context of potential industrial-scale reactor applications. On the other hand, the direct low-field NMR detection of reaction products with enhanced nuclear spin polarization is challenging due to near complete signal cancellation from nascent parahydrogen protons. We show that hydrogenation products prepared by PHIP can be irradiated with weak (on the order of spin-spin couplings of a few hertz) alternating magnetic field (called Spin-Lock Induced Crossing or SLIC) and consequently efficiently detected at low magnetic field (e.g., 0.05 T used here) using examples of several types of organic molecules containing a vinyl moiety. The detected hyperpolarized signals from several reaction products at tens of millimolar concentrations were enhanced by 10000-fold, producing NMR signals an order of magnitude greater than the background signal from protonated solvents.

19.
J Phys Chem C Nanomater Interfaces ; 119(13): 7525-7533, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-26185545

ABSTRACT

Two types of nanoscale catalysts were created to explore NMR signal enhancement via reversible exchange (SABRE) at the interface between heterogeneous and homogeneous conditions. Nanoparticle and polymer comb variants were synthesized by covalently tethering Ir-based organometallic catalysts to support materials comprised of TiO2/PMAA (poly methacrylic acid) and PVP (polyvinyl pyridine), respectively, and characterized by AAS, NMR, and DLS. Following parahydrogen (pH2) gas delivery to mixtures containing one type of "nano-SABRE" catalyst particles, a target substrate, and ethanol, up to ~(-)40-fold and ~(-)7-fold 1H NMR signal enhancements were observed for pyridine substrates using the nanoparticle and polymer comb catalysts, respectively, following transfer to high field (9.4 T). These enhancements appear to result from intact particles and not from any catalyst molecules leaching from their supports; unlike the case with homogeneous SABRE catalysts, high-field (in situ) SABRE effects were generally not observed with the nanoscale catalysts. The potential for separation and reuse of such catalyst particles is also demonstrated. Taken together, these results support the potential utility of rational design at molecular, mesoscopic, and macroscopic/engineering levels for improving SABRE and HET-SABRE (heterogeneous-SABRE) for applications varying from fundamental studies of catalysis to biomedical imaging.

20.
J Phys Chem Lett ; 6(10): 1961-7, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26029349

ABSTRACT

We report NMR Signal Amplification by Reversible Exchange (SABRE) hyperpolarization of the rare isotopes in "neat" liquids, each composed only of an otherwise pure target compound with isotopic natural abundance (n.a.) and millimolar concentrations of dissolved catalyst. Pyridine (Py) or Py derivatives are studied at 0.4% isotopic natural abundance ¹5N, deuterated, ¹5N enriched, and in various combinations using the SABRE-SHEATH variant (microTesla magnetic fields to permit direct ¹5N polarization from parahydrogen via reversible binding and exchange with an Ir catalyst). We find that the dilute n.a. ¹5N spin bath in Py still channels spin order from parahydrogen to dilute ¹5N spins, without polarization losses due to the presence of ¹4N or ²H. We demonstrate P(15N) ≈ 1% (a gain of 2900 fold relative to thermal polarization at 9.4 T) at high substrate concentrations. This fundamental finding has a significant practical benefit for screening potentially hyperpolarizable contrast agents without labeling. The capability of screening at n.a. level of ¹5N is demonstrated on examples of mono- and dimethyl-substituted Py (picolines and lutidines previously identified as promising pH sensors), showing that the presence of a methyl group in the ortho position significantly decreases SABRE hyperpolarization.


Subject(s)
Magnetic Resonance Spectroscopy , Catalysis , Hydrogen/chemistry , Iridium/chemistry , Nitrogen Isotopes/chemistry , Pyridines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...