Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Antibiotics (Basel) ; 13(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38667016

ABSTRACT

Staphylococcus aureus is frequently highlighted as a priority for novel drug research due to its pathogenicity and ability to develop antibiotic resistance. Coagulase-negative staphylococci (CoNS) are resident flora of the skin and nares. Previous studies have confirmed their ability to kill and prevent colonization by S. aureus through the production of bioactive substances. This study screened a bank of 37 CoNS for their ability to inhibit the growth of methicillin-resistant S. aureus (MRSA). Deferred antagonism assays, growth curves, and antibiofilm testing performed with the cell-free supernatant derived from overnight CoNS cultures indicated antimicrobial and antibiofilm effects against MRSA indicators. Whole genome sequencing and BAGEL4 analysis of 11 CoNS isolates shortlisted for the inhibitory effects they displayed against MRSA led to the identification of two strains possessing complete putative bacteriocin operons. The operons were predicted to encode a nukacin variant and a novel epilancin variant. From this point, strains Staphylococcus hominis C14 and Staphylococcus epidermidis C33 became the focus of the investigation. Through HPLC, a peptide identical to previously characterized nukacin KQU-131 and a novel epilancin variant were isolated from cultures of C14 and C33, respectively. Mass spectrometry confirmed the presence of each peptide in the active fractions. Spot-on-lawn assays demonstrated both bacteriocins could inhibit the growth of an MRSA indicator. The identification of natural products with clinically relevant activity is important in today's climate of escalating antimicrobial resistance and a depleting antibiotic pipeline. These findings also highlight the prospective role CoNS may play as a source of bioactive substances with activity against critical pathogens.

2.
Heliyon ; 10(6): e27932, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38515691

ABSTRACT

Recently, case studies have been published regarding the application of mycobacteriophage (MP) therapy (MPT) in patients with multi-antibiotic-resistant infections. A major limitation in the development of MPT is the paucity of therapeutically useful MP. As there are approximately 10,000 MP that have yet to be sequenced, it is possible that characterization of this cohort would increase the repertoire of useful MP. This study aims to contribute to such a strategy, by characterizing a cohort of 7 mycobacteriophages. Sequencing analyses revealed that the MP have unique sequences, and subsequent gene annotation revealed differences in gene organization. Notably, MP LOCARD has the largest genome and operons encoding for glycosyltransferases. Taxonomic analysis executed with VIRIDIC, Gegenees and VICTOR revealed that LOCARD belongs to a different genus than the other phages and is the foundational member of one of three novel species identified in this study. LOCARD, LOCV2, and LOCV5 were selected as representative members of their species and subjected to phenotypic analyses to compare their stability under biologically and industrially relevant conditions. Again LOCARD stood out, as it was unaffected by the typical temperatures (37 °C) and salinity (0.9%) experienced in mammals, while the viability of LOCV2 and LOCV5 was significantly reduced. LOCARD was also tolerant to pH 10, low levels of antiviral detergent and was the least impacted by a single freeze-thaw cycle. When all these results are considered, it indicates that LOCARD in particular, has potential therapeutic and/or diagnostics applications, given its resilience towards physiological and storage conditions.

3.
Microbiome Res Rep ; 2(3): 21, 2023.
Article in English | MEDLINE | ID: mdl-38046825

ABSTRACT

Aim: To identify novel genera amongst mycobacteriophages (MP) and verify a hypothesised correlation between the taxonomy set by the International Committee on Taxonomy of Viruses (ICTV) and the National Centre for Biotechnology Information (NCBI) with that of the Actinobacteriophage Database, which may help formalise subcluster assignment. Methods: A dataset of 721 MP genomes was analysed using VIRIDIC, a nucleotide alignment-based software that predicts genus assignments. Potentially novel genera were analysed using Gegenees and VICTOR, respectively. These genera were then compared to the subclusters assigned by the Actinobacteriophage Database to verify a hypothesis that one genus can be assigned to one subcluster (i.e., the genus-subcluster hypothesis). Results: Initially, when comparing the current genus classifications of the 721 MP dataset to the Actinobacteriophage database subcluster assignments, 83.3% of subclusters supported the genus-subcluster hypothesis. Following the sequential VIRIDIC, Gegenees and VICTOR analyses, a total of 20 novel genera were identified based on a ≥ 70% and ~ 50% similarity threshold for VIRIDIC and Gegenees, respectively, and a monophyletic nature in the VICTOR output. Interestingly, these criteria also appear to support the creation of 13 novel subclusters, which would increase the support for the genus-subcluster hypothesis to 97.6%. Conclusion: The link between genus and subcluster classifications appears robust, as most subclusters can be assigned a single genus and vice versa. By relating the taxonomic and clustering classification systems, they can be easily kept up to date to best reflect MP diversity, which could aid the rapid selection of related (or diverse) phages for research, therapeutic and diagnostic purposes.

4.
Viruses ; 15(12)2023 11 22.
Article in English | MEDLINE | ID: mdl-38140531

ABSTRACT

Encapsulated medication is a common method of administering therapeutic treatments. As researchers explore alternative therapies, it is likely that encapsulation will remain a feature of these novel treatments, particularly when routes of delivery are considered. For instance, alginate-encapsulation is often favoured where gastric digestion poses an obstacle. When exposed to cations (namely Ca2+), alginate readily forms gels that are resilient to acidic conditions and readily dissociate in response to mid-range pH. This action can be extremely valuable for the encapsulation of phages. The efficient delivery of phages to the intestine is important when considering mycobacteriophage (MP) therapy (or MP prophylaxis) for disseminated mycobacterial infections and chronic gastroenteritis conditions. This study presents the design and in vitro validation of an alginate-encapsulated MP capable of releasing phages in a pH-dependent manner. Ultimately, it is shown that encapsulated phages pretreated with simulated gastric fluid (SGF) are capable of releasing viable phages into simulated intestinal fluid (SIF) and thereby reducing the mycobacterial numbers in spiked SIF by 90%. These findings suggest that alginate encapsulation may be a viable option for therapeutic and prophylactic approaches to the management of intestinal mycobacterial disease, such as Johne's disease.


Subject(s)
Bacteriophages , Intestinal Diseases , Mycobacteriophages , Humans , Alginates , Intestines
5.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37756552

ABSTRACT

We present herein a custom-made, in situ, multimodal spin coater system with an integrated heating stage that can be programmed with spinning and heating recipes and that is coupled with synchrotron-based, grazing-incidence wide- and small-angle x-ray scattering. The spin coating system features an adaptable experimental chamber, with the ability to house multiple ancillary probes such as photoluminescence and visible optical cameras, to allow for true multimodal characterization and correlated data analysis. This system enables monitoring of structural evolutions such as perovskite crystallization and polymer self-assembly across a broad length scale (2 Å-150 nm) with millisecond temporal resolution throughout a complete thin film fabrication process. The use of this spin coating system allows scientists to gain a deeper understanding of temporal processes of a material system, to develop ideal conditions for thin film manufacturing.

6.
ACS Nano ; 17(18): 18392-18401, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37668312

ABSTRACT

Carbon superstructures are widely applied in energy and environment-related areas. Among them, the flower-like polyacrylonitrile (PAN)-derived carbon materials have shown great promise due to their high surface area, large pore volume, and improved mass transport. In this work, we report a versatile and straightforward method for synthesizing one-dimensional (1D) nanostructured fibers and two-dimensional (2D) nanostructured thin films based on flower-like PAN chemistry by taking advantage of the nucleation and growth behavior of PAN. The resulting nanofibers and thin films exhibited distinct morphologies with intersecting PAN nanosheets, which formed through rapid nucleation on existing PAN. We further constructed a variety of hierarchical PAN superstructures based on different templates, solvents, and concentrations. These PAN nanosheet superstructures can be readily converted to carbon superstructures. As a demonstration, the nanostructured thin film exhibited a contact angle of ∼180° after surface modification with fluoroalkyl monolayers, which is attributed to high surface roughness enabled by the nanosheet assemblies. This study offers a strategy for the synthesis of nanostructured carbon materials for various applications.

7.
Precis Chem ; 1(7): 443-451, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37771515

ABSTRACT

Photoinduced interfacial charge transfer plays a critical role in energy conversion involving van der Waals (vdW) heterostructures constructed of inorganic nanostructures and organic materials. However, the effect of molecular stacking configurations on charge transfer dynamics is less understood. In this study, we demonstrated the tunability of interfacial charge separation in a type-II heterojunction between monolayer (ML) WS2 and an organic semiconducting molecule [2-(3″',4'-dimethyl-[2,2':5',2':5″,2″'-quaterthiophen]-5-yl)ethan-1-ammonium halide (4Tm)] by rational design of relative stacking configurations. The assembly between ML-WS2 and the 4Tm molecule forms a face-to-face stacking when 4Tm molecules are in a self-aggregation state. In contrast, a face-to-edge stacking is observed when 4Tm molecule is incorporated into a 2D organic-inorganic hybrid perovskite lattice. The face-to-face stacking was proved to be more favorable for hole transfer from WS2 to 4Tm and led to interlayer excitons (IEs) emission. Transient absorption measurements show that the hole transfer occurs on a time scale of 150 fs. On the other hand, the face-to-edge stacking resulted in much slower hole transfer without formation of IEs. This inefficient hole transfer occurs on a similar time scale as A exciton recombination in WS2, leading to the formation of negative trions. These investigations offer important fundamental insights into the charge transfer processes at organic-inorganic interfaces.

8.
Anim Health Res Rev ; 24(1): 12-27, 2023 06.
Article in English | MEDLINE | ID: mdl-37475561

ABSTRACT

Antibiotic resistance has become a major health concern globally, with current predictions expecting deaths related to resistant infections to surpass those of cancer by 2050. Major efforts are being undertaken to develop derivative and novel alternatives to current antibiotic therapies in human medicine. What appears to be lacking however, are similar efforts into researching the application of those alternatives, such as (bacterio)phage therapy, in veterinary contexts. Agriculture is still undoubtedly the most prominent consumer of antibiotics, with up to 70% of annual antibiotic usage attributed to this sector, despite policies to reduce their use in food animals. This not only increases the risk of resistant infections spreading from farm to community but also the risk that animals may acquire species-specific infections that subvert treatment. While these diseases may not directly affect human welfare, they greatly affect the profit margin of industries reliant on livestock due to the cost of treatments and (more frequently) the losses associated with animal death. This means actively combatting animal infection not only benefits animal welfare but also global economies. In particular, targeting recurring or chronic conditions associated with certain livestock has the potential to greatly reduce financial losses. This can be achieved by developing novel diagnostics to quickly identify ill animals alongside the design of novel therapies. To explore this concept further, this review employs Johne's disease, a chronic gastroenteritis condition that affects ruminants, as a case study to exemplify the benefits of rapid diagnostics and effective treatment of chronic disease, with particular regard to the diagnostic and therapeutic potential of phage.


Subject(s)
Paratuberculosis , Animals , Humans , Anti-Bacterial Agents/therapeutic use , Ruminants , Livestock , Agriculture
9.
Nat Commun ; 14(1): 397, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36693860

ABSTRACT

Electroluminescence efficiencies and stabilities of quasi-two-dimensional halide perovskites are restricted by the formation of multiple-quantum-well structures with broad and uncontrollable phase distributions. Here, we report a ligand design strategy to substantially suppress diffusion-limited phase disproportionation, thereby enabling better phase control. We demonstrate that extending the π-conjugation length and increasing the cross-sectional area of the ligand enables perovskite thin films with dramatically suppressed ion transport, narrowed phase distributions, reduced defect densities, and enhanced radiative recombination efficiencies. Consequently, we achieved efficient and stable deep-red light-emitting diodes with a peak external quantum efficiency of 26.3% (average 22.9% among 70 devices and cross-checked) and a half-life of ~220 and 2.8 h under a constant current density of 0.1 and 12 mA/cm2, respectively. Our devices also exhibit wide wavelength tunability and improved spectral and phase stability compared with existing perovskite light-emitting diodes. These discoveries provide critical insights into the molecular design and crystallization kinetics of low-dimensional perovskite semiconductors for light-emitting devices.

10.
Pathogens ; 11(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015051

ABSTRACT

Campylobacter is the most common foodborne pathogen in developed countries and most cases are associated with poultry. This study investigated the effect of three anti-Campylobacter water additives on broiler growth and on the caecal microbiota at harvest using 16S rRNA amplicon sequencing. Mixtures of organic acids (OA) and essential oils (EO) were administered to broilers for the entirety of the production cycle (35 d) and medium-chain fatty acids (MCFA) for 5 d immediately before harvest, under commercial conditions. Bird weight gain was significantly (p < 0.001) reduced in broilers receiving the OA and EO treatments. While this was most likely due to reduced water intake and corresponding lower feed consumption, changes to the caecal microbiota may also have contributed. Firmicutes made up over 75% of the bacteria regardless of sample type, while the minor phyla included Bacteroidetes, Actinobacteria, Melainabacteria, and Proteobacteria. There were no significant (p > 0.05) differences in the alpha diversity as measured using ACE, Chao1, and Shannon indices, except for control (water) versus MCFA and OA versus MCFA, using the Wilcox test. In contrast, there was a significant (p < 0.05) difference in beta diversity when the treated were compared to the untreated control and main flock samples, while linear discriminant analysis effect size (LeFSe) identified three OTUs that were present in the control but absent in the treated birds. It was concluded that the water additives tested adversely affected broiler performance, which may, at least in part, be due to changes in the caecal microbiota, assuming that the altered microbiota at day 35 is indicative of a change throughout the production cycle.

11.
J Appl Microbiol ; 133(5): 3150-3160, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35993276

ABSTRACT

AIMS: The aim was to exploit whole genome sequencing (WGS) to assess genomic diversity, identify virulence genes and deduce the proportion of Campylobacter colonized broilers that directly contaminate their carcasses. METHODS AND RESULTS: Campylobacter jejuni isolates (107) from caeca and carcass neck skin samples (50 pairs from the same batch plus 7 individual caeca) sampled at three poultry slaughterhouses over a one-year period were selected for sequencing (MiSeq; Illumina). FastQ files were submitted to BioNumerics for analysis using the wgMLST scheme for allele calling. Campylobacter cgMLST and hierarchical clustering was performed by applying the single linkage algorithm. Sequence types (STs) were determined in silico from the WGS data and isolates were assigned into clonal complexes (CCs) using the Campylobacter PubMLST.org database. Virulence genes were determined by downloading core sequences from the virulence factor database (VFDB) and the National Center for Biotechnology Information (NCBI). A high degree of diversity was observed with 23 different STs identified. ST257 and CC-21 were the most common STs and CCs, respectively. cgMLST analysis suggested that 56% of carcass contamination was a direct result of contamination from caeca from the same batch. Virulence genes known to play a role in human C. jejuni infection were identified such as the wlaN gene and the genes associated with lipooligosaccharide synthesis, which were identified in 30% of isolates. CONCLUSIONS: Caecal colonization was the more plausible occurring source of C. jejuni contamination of broiler carcasses, compared with cross-contamination from another batch or the environment. The high rate of genetic diversity observed amongst caecal isolates is consistent with a wide variety of Campylobacter strains circulating in poultry flocks in Ireland. SIGNIFICANCE AND IMPACT OF STUDY: The results will further inform broiler processors and regulators about the influence and importance of on-farm colonization versus slaughterhouse cross-contamination and the relationship between C. jejuni in caeca and carcasses during processing.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Campylobacter , Animals , Humans , Campylobacter jejuni/genetics , Abattoirs , Poultry , Virulence/genetics , Chickens , Campylobacter Infections/veterinary , Whole Genome Sequencing , Genomics , Virulence Factors/genetics
12.
Front Microbiol ; 13: 885862, 2022.
Article in English | MEDLINE | ID: mdl-35875529

ABSTRACT

16S rRNA amplicon sequencing was used to investigate changes in the broiler gastrointestinal tract (GIT) microbiota throughout the rearing period and in combination with antibiotic treatment. Thirty birds (from a commercial flock) were removed at multiple points throughout the rearing period on days 13, 27, and 33, euthanised, and their GIT aseptically removed and divided into upper (the crop, proventriculus, and the gizzard), middle (the duodenum, jejunum, and ileum) and lower (the large intestine, the caeca, and the cloaca) sections. In a separate commercial flock, on the same farm with similar husbandry practices and feed, doxycycline (100 mg/ml per kg body weight) was administered in drinking water between day 8 and 12 (inclusive) of the production cycle. Birds were removed on days, 13, 27, and 33 and GIT samples prepared as above. The contents of three merged samples from each GIT section were pooled (n = 60), the DNA extracted and analysed by 16S rRNA amplicon metagenomic sequencing and analysed. Major changes in the broiler microbiota were observed as the birds aged particularly with the Firmicutes/Bacteroidetes ratio (F:B) of the lower GIT. Moreover, Chao1, ACE, and Shannon indices showed the antibiotic treatment significantly altered the microbiota, and this change persisted throughout the rearing period. Further research is required to investigate the effect of these changes on bird performance, susceptibility to infections and Campylobacter carriage.

13.
Foods ; 11(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35885256

ABSTRACT

A milk-alternative produced from lentil protein isolate was fermented with three multifunctional strains of lactic acid bacteria, Leuconostoc citreum TR116, Leuconostoc pseudomesenteroides MP070, and Lacticaseibacillus paracasei FST 6.1. As a control, a commercial starter culture containing Streptococcus thermophilus was used. The metabolic performance of these strains and the techno-functional properties of the resulting yogurt alternatives (YA) were studied. Microbial growth was evaluated by cell counts, acidification, and carbohydrate metabolization. The structure of the YA was investigated by textural and rheological analyses and confocal laser scanning microscopy (CLSM). Production of antifungal compounds, the influence of fermentation on the content of FODMAPs, and typical metabolites were analyzed, and a sensory analysis was performed. The results revealed an exponential microbial growth in the lentil base substrate supported by typical acidification, which indicates a suitable environment for the selected strains. The resulting YA showed a gel-like texture typical for non-stirred yogurts, and high water holding capacity. The tested strains produced much higher levels of antifungal phenolic compounds than the commercial control and are therefore promising candidates as adjunct cultures for shelf-life extension. The Leuconostoc strains produced mannitol from fructose and could thus be applied in sugar-reduced YA. Preliminary sensory analysis showed high acceptance for YA produced with Lacticaseibacillus paracasei FST 6.1, and a yogurt-like flavor not statistically different to that produced by the control. Overall, each tested strain possessed promising functionalities with great potential for application in fermented plant-based dairy-alternatives.

14.
Int J Food Microbiol ; 372: 109693, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35490507

ABSTRACT

In 2008, an EU wide baseline survey of broilers revealed a high Campylobacter prevalence. To assist with industry-wide controls, updated data were required. The primary objective of this study was to establish up-to-date data on Campylobacter carriage and carcass contamination in Irish broilers. Monthly samples were collected from the three largest broiler processing plants in Ireland over a twelve-month period. Samples were taken from both first and final thin birds (partial and full depopulation) from 358 batches of broilers. From each batch, a composite sample of 10 caecal contents (n = 358) and 5 neck skins (n = 1790) were collected and numbers of Campylobacter in each sample were determined. Of the 1790 neck skin samples tested, 53% were Campylobacter positive. Campylobacter was detected in the caecal contents of 66% of all batches tested. Depopulation and/or age had a significant effect on Campylobacter prevalence with 67% of final thin broilers yielding Campylobacter-positive neck skin samples in contrast to 38% of first thin broilers that yielded positive neck skin samples (P ≤ 0.002). A significant seasonal variation was observed in the rate of Campylobacter-positive caecal samples with higher prevalence seen in July (85%) than the colder months of November (61%), December (50%), January (61%) March (57%) and April (59%). Neck skin samples were 7 times more likely to be Campylobacter positive if the caecal contents from the same batch were positive (odds ratio = 7.1; P ≤ 0.0001). The decrease in Campylobacter prevalence observed in neck skin and caecal contents demonstrates the improvements and progress made in reducing prevalences of this important enteropathogen in the Irish poultry industry since the 2008 EU baseline survey. It also provides further supporting data on the impact of thinning, the processing environment and season on Campylobacter prevalence.


Subject(s)
Campylobacter , Abattoirs , Animals , Chickens , Colony Count, Microbial , Food Contamination/analysis , Food Microbiology , Ireland/epidemiology , Prevalence
15.
NPJ Biofilms Microbiomes ; 8(1): 29, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440653

ABSTRACT

Bacterial vaginosis (BV) is a recurrent dysbiosis that is frequently associated with preterm birth, increased risk for acquisition of human immunodeficiency virus (HIV) and other sexually transmitted infections (STIs). The overgrowth of a key pathobiont, Gardnerella vaginalis, as a recalcitrant biofilm is central to the development of this dysbiosis. Overgrowth of vaginal biofilms, seeded by initial G. vaginalis colonization, leads to recurrent symptomatic BV which is poorly resolved by classically used antibiotics. In this light, the use of bacteriophages and/or their proteins, represents a promising alternative. Here we identify 84 diverse anti-Gardnerella endolysins across 7 protein families. A subset of 36 endolysin candidates were refactored and overexpressed in an E. coli BL21 (DE3) system and 5 biochemically and structurally diverse endolysins were fully characterized. Each candidate endolysin showed good lytic activity against planktonic G. vaginalis ATCC14018, as well as G. vaginalis clinical isolates. These endolysin candidates were assayed in biofilm prevention and disruption assays, with biofilm disruption at low microgram concentrations (5 µg/ml) observed. In addition to clonal G. vaginalis biofilms, endolysin candidates could also successfully disrupt polyspecies biofilms. Importantly, none of our candidates showed lytic activity against commensal lactobacilli present in the vaginal microbiota such as L. crispatus, L. jensenii, L. gasseri, and L. iners or against Atopobium vaginae (currently classified as Fannyhessa vaginae). The potency and selectivity of these novel endolysins constitute a promising alternative treatment to combat BV, avoiding problems associated with antibiotic resistance, while retaining beneficial commensal bacteria in the vaginal flora. The diverse library of candidates reported here represents a strong repository of endolysins for further preclinical development.


Subject(s)
Premature Birth , Vaginosis, Bacterial , Biofilms , Dysbiosis , Endopeptidases , Escherichia coli , Female , Gardnerella vaginalis , Humans , Infant, Newborn , Pregnancy , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/microbiology
16.
Viruses ; 14(3)2022 03 17.
Article in English | MEDLINE | ID: mdl-35337034

ABSTRACT

Bacteriophages (phages) of the genus Kayvirus of Staphylococcus aureus are promising agents for therapeutic applications. In this study, we isolated Kayvirus phages, SAM1 and SAM2, from the Fersisi commercial phage cocktail (George Eliava Institute, Tbilisi, Georgia), which exhibits high sequence homology with phage K (≥94%, BLASTn). We found that phages SAM1 and SAM2 infected 95% and 86% of 21 MRSA of differing sequence types (MLST, SCCmec type) obtained from the Irish National MRSA collection, respectively. We conducted differential transcriptomic analysis by RNA-Seq on phage SAM1 during host infection, showing differential expression of its genes at different points during host infection. This analysis also allowed the identification of potentially adverse outcomes in the application of these phages to target MRSA as therapy. The interaction of phage SAM1 on the host caused the upregulation of prophage genes. Additionally, phage infection was found to cause the slight upregulation of host genes implicated in virulence factors relating to hemolysins, immune evasion, and adhesion, but also the downregulation of genes associated with enterotoxins. The findings of this study give further insights into the biology of kayviruses and their use as therapeutics.


Subject(s)
Bacteriophages , Staphylococcal Infections , Bacteriophages/physiology , Humans , Multilocus Sequence Typing
17.
Biochem Biophys Rep ; 29: 101208, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35079640

ABSTRACT

Proteins and peptides belonging to the plant immune system can possess natural antibacterial, antifungal and antiviral properties. Due to their broad range of activity and stability, they represent promising novel alternatives to commonly used antifungal agents to fight the emergence of resistant strains. An isolation protocol was optimised to target proteins found in plants' defence system, and it was applied to white mustard (Brassica hirta) seeds. Firstly, a ∼14 kDa protein with activity against S. cerevisiae was extracted and purified; secondly, the protein was identified as the mustard Napin protein named Allergen Sin a 1. Napin is the name given to seed storage (2S) albumin proteins belonging to the Brassicaceae family. While several Napins have been described for their antimicrobial potential, Sin a 1 has been mainly studied for its allergenic properties. The antimicrobial activity of Sin a 1 is described and characterised for the first time in this study; it possesses antifungal and antiyeast in vitro activity, but no antibacterial activity was recorded. The yeasts Zygosaccharomyces bailii Sa 1403 and Saccharomyces cerevisiae DSM 70449 along with the filamentous fungi Fusarium culmorum FST 4.05 were amongst the most senstitive strains to Sin a 1 (MICs range 3-6 µM). The antimicrobial mechanism of membrane permeabilisation was detected, and in general, the antifungal activity of Sin a 1 seemed to be expressed in a dose-dependent manner. Data collected confirmed Sin a 1 to be a stable and compact protein, as it displayed resistance to α-chymotrypsin digestion, heat denaturation and insensitivity to pH variations and the presence of salts. In addition, the protein did not show cytotoxicity towards mammalian cells.

18.
Pathog Dis ; 79(9)2022 01 07.
Article in English | MEDLINE | ID: mdl-34962980

ABSTRACT

Campylobacter fetus can cause intestinal and systemic disease in humans and are well-established veterinary and economic pathogens. We report the complete genomic sequences of two C. fetus subsp. fetus (Cff) isolates recovered in 2017 (CITCf01) and 2018 (CITCf02) from a case of recurrent prosthetic valve endocarditis. Both were capable of growth aerobically. Their genomes were found to be highly conserved and syntenic with 99.97% average nucleotide identity (ANI) while differences in their respective sap loci defined the temporal separation of their genomes. Based on core genome phylogeny and ANI of 83 Cff genomes belonging to the previously described human-associated Cff lineage, CITCf01 and CITCf02 grouped in a clade of 11 sequence type (ST)3 Cff (including the Cff type strain NCTC 10842T). CITCf01 and CITCf02 were marked for their lack of unique genomic features when compared to isolates within the subspecies and the type strain in particular. We identified point mutations in oxidative stress response genes, among others, that may contribute to aerobiosis. We report a case of Cff causing relapsed prosthetic valve endocarditis and we highlight the sap island as a polymorphic site within the genetically stable ST3 lineage, central to pathogenicity.


Subject(s)
Campylobacter fetus/classification , Campylobacter fetus/genetics , Endocarditis, Bacterial/diagnosis , Endocarditis, Bacterial/etiology , Heart Valve Prosthesis/adverse effects , Bacterial Typing Techniques , Campylobacter fetus/isolation & purification , Genome, Bacterial , Genomics , Humans , Mutation
19.
J Appl Microbiol ; 132(1): 687-695, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34218482

ABSTRACT

AIMS: This research tested the anti-Campylobacter properties of organic acids (OA), medium chain fatty acids (MCFA) and essential oils (EO) in vitro and commenced in vivo suitability testing focused on broiler performance. METHODS AND RESULTS: Nine active compounds were tested at different concentrations and times against Campylobacter jejuni in sterile distilled water, Mueller Hinton broth and grower feed digestate (GFD). Sodium caprate (1.5%, v/v), thymol (0.25% and 2.5%, v/v), carvacrol (1.25%, v/v) and potassium sorbate (1.5%, v/v) each achieved C. jejuni reductions of ≥4.5 log10  CFU per ml in GFD, the matrix most representative of the broiler gut, after 60 s. Similar reductions were achieved after 60 min with lactic acid (1.25%, v/v), formic acid (3.1%, v/v), sodium caprylate (1.5%, v/v) and carvacrol (1.25%, v/v). However, in vivo these compounds adversely affected broiler performance, resulting in dimished water intake and reduced weight. CONCLUSIONS: OA, MFCA and EO based compounds are effective anti-Campylobacter treatments in laboratory model studies but cannot be applied in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY: This study illustrates that OAs, MCFAs and EOs can achieve significant reductions in Campylobacter in vitro but identifies a major issue, inhibition of broiler performance, preventing their use in practice.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Oils, Volatile , Poultry Diseases , Animal Feed/analysis , Animals , Chickens , Fatty Acids , Oils, Volatile/pharmacology
20.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Article in English | MEDLINE | ID: mdl-36748456

ABSTRACT

Strains LMG 7974T and LMG 8286T represent single, novel Campylobacter lineages with Campylobacter pinnipediorum and Campylobacter mucosalis as nearest phylogenomic neighbours, respectively. The results of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) analyses of LMG 7974T, LMG 8286T and type strains of species of the genus Campylobacter confirmed that these strains represent novel species of the genus Campylobacter. The 16S rRNA gene sequences of both strains showed highest identity towards C. mucosalis (97.84 and 98.74 %, respectively). Strains LMG 7974T and LMG 8286T shared 72.5 and 73.7% ANI, respectively, with their nearest phylogenomic neighbours and less than 21 % dDDH. The draft genome sizes of LMG 7974T and LMG 8286T are 1 945429 bp and 1 708214 bp in length with percentage DNA G+C contents of 33.8 and 37.2 %, respectively. Anomalous biochemical characteristics and low MALDI-TOF mass spectrometry log scores supported their designation as representing novel species of the genus Campylobacte. We therefore propose to classify strain LMG 7974T (=CCUG 20705T) as the type strain of the novel species Campylobacter majalis sp. nov. and strain LMG 8286T (=CCUG 24193T, NCTC 11879T) as the type strain of the novel species Campylobacter suis sp. nov.


Subject(s)
Campylobacter , Fatty Acids , Animals , Swine , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Phylogeny , Base Composition , Bacterial Typing Techniques , Fatty Acids/chemistry , Mucous Membrane/chemistry , Nucleic Acid Hybridization
SELECTION OF CITATIONS
SEARCH DETAIL
...