Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 59(24): 10891-10916, 2016 12 22.
Article in English | MEDLINE | ID: mdl-27749056

ABSTRACT

The G protein-coupled receptor 40 (GPR40) also known as free fatty acid receptor 1 (FFAR1) is highly expressed in pancreatic, islet ß-cells and responds to endogenous fatty acids, resulting in amplification of insulin secretion only in the presence of elevated glucose levels. Hypothesis driven structural modifications to endogenous FFAs, focused on breaking planarity and reducing lipophilicity, led to the identification of spiropiperidine and tetrahydroquinoline acid derivatives as GPR40 agonists with unique pharmacology, selectivity, and pharmacokinetic properties. Compounds 1 (LY2881835), 2 (LY2922083), and 3 (LY2922470) demonstrated potent, efficacious, and durable dose-dependent reductions in glucose levels along with significant increases in insulin and GLP-1 secretion during preclinical testing. A clinical study with 3 administered to subjects with T2DM provided proof of concept of 3 as a potential glucose-lowering therapy. This manuscript summarizes the scientific rationale, medicinal chemistry, preclinical, and early development data of this new class of GPR40 agonists.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Drug Discovery , Hypoglycemic Agents/pharmacology , Piperidines/pharmacology , Receptors, G-Protein-Coupled/agonists , Spiro Compounds/pharmacology , Animals , Dose-Response Relationship, Drug , Glucose Tolerance Test , HEK293 Cells , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Rats , Rats, Zucker , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship
2.
ACS Med Chem Lett ; 5(10): 1138-42, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25313327

ABSTRACT

Cathepsin S (Cat S) plays an important role in many pathological conditions, including abdominal aortic aneurysm (AAA). Inhibition of Cat S may provide a new treatment for AAA. To date, several classes of Cat S inhibitors have been reported, many of which form covalent interactions with the active site Cys25. Herein, we report the discovery of a novel series of noncovalent inhibitors of Cat S through a medium-throughput focused cassette screen and the optimization of the resulting hits. Structure-based optimization efforts led to Cat S inhibitors such as 5 and 9 with greatly improved potency and drug disposition properties. This series of compounds binds to the S2 and S3 subsites without interacting with the active site Cys25. On the basis of in vitro potency, selectivity, and efficacy in a CaCl2-induced AAA in vivo model, 5 (LY3000328) was selected for clinical development.

3.
J Med Chem ; 48(16): 5305-20, 2005 Aug 11.
Article in English | MEDLINE | ID: mdl-16078848

ABSTRACT

(+)-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (1), also known as LY354740, is a highly potent and selective agonist for group II metabotropic glutamate receptors (mGlu receptors 2 and 3) tested in clinical trials. It has been shown to block anxiety in the fear-potentiated startle model. Its relatively low bioavailability in different animal species drove the need for an effective prodrug form that would produce a therapeutic response at lower doses for the treatment of anxiety disorders. We have investigated the increase of intestinal absorption of this compound by targeting the human peptide transporter hPepT1 for active transport of di- and tripeptides derived from 1. We have found that oral administration of an N dipeptide derivative of 1 (12a) in rats shows up to an 8-fold increase in drug absorption and a 300-fold increase in potency in the fear-potentiated startle model in rats when compared with the parent drug 1.


Subject(s)
Alanine/analogs & derivatives , Anti-Anxiety Agents/chemical synthesis , Bridged Bicyclo Compounds/chemical synthesis , Dipeptides/chemical synthesis , Prodrugs/chemical synthesis , Receptors, Metabotropic Glutamate/agonists , Administration, Oral , Alanine/administration & dosage , Alanine/chemical synthesis , Alanine/pharmacokinetics , Animals , Anti-Anxiety Agents/pharmacokinetics , Anti-Anxiety Agents/pharmacology , Biological Availability , Bridged Bicyclo Compounds/administration & dosage , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/pharmacology , Cell Line, Tumor , Cricetinae , Cricetulus , Dipeptides/pharmacokinetics , Dipeptides/pharmacology , Humans , Male , Peptide Transporter 1 , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Rats , Rats, Sprague-Dawley , Reflex, Startle/drug effects , Stereoisomerism , Structure-Activity Relationship , Symporters/metabolism
4.
J Org Chem ; 69(9): 2967-75, 2004 Apr 30.
Article in English | MEDLINE | ID: mdl-15104433

ABSTRACT

Synthesis of indolo[6,7-a]pyrrolo[3,4-c]carbazoles 1, a new class of cyclin D1/CDK4 inhibitors, by oxidation of the corresponding aryl indolylmaleimides 2, will be described. Two approaches to the synthesis of 2 were identified that required new methods for the synthesis of 7-substituted indole acetamides 3 and N-methyl (indol-7-yl)oxoacetates 6. The chemistry developed enabled introduction of functionality (-OR, NR(2)) at C(12) and N(13) facilitating structure-activity relationship (SAR) evaluation of this indolocarbazole platform.


Subject(s)
Antineoplastic Agents/chemical synthesis , Carbazoles/chemical synthesis , Cyclin D1/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Indoles/chemistry , Proto-Oncogene Proteins , Pyrroles/chemistry , Acetamides/chemistry , Acetates/chemistry , Cyclin-Dependent Kinase 4 , Humans , Maleimides/chemistry , Oxidants/chemistry , Photochemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...