Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(10): 14472-14486, 2019 May 13.
Article in English | MEDLINE | ID: mdl-31163896

ABSTRACT

In this work, a geometric phase liquid-crystal diffraction grating based on the optimal triplicator design is realized, i.e., a phase-only profile that generates three diffraction orders with equal intensity and maximum diffraction efficiency. We analyze the polarization properties of this special diffraction grating and then use embedded spiral phases to design geometric phase vortex diffraction gratings. Finally, the fabrication of a two-dimensional version of such a design using a micro-patterned half-wave retarder is demonstrated, where the phase distribution is encoded as the orientation of the fast axis of the retarder. This proof-of-concept element is made of liquid crystal on BK7 substrate where the orientation of the LC is controlled via photoalignment, using a commercially available fabrication facility. Experimental results demonstrate the parallel generation of vortex beams with different topological charge and different states of polarization.

2.
Opt Express ; 27(3): 2374-2386, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30732276

ABSTRACT

The robustness of the polarization spatial distribution of vector beams upon propagation is crucial for a number of applications, including optical communications and materials processing. This study has been commonly centered on Gouy phase effects on focused vector beams. In this work, we present a theoretical and experimental analysis of the Gouy phase's effects on the propagation of pure and hybrid vector beams. Experimental results at various axial planes, before and past the focus, are obtained by using a simplified liquid-crystal spatial light modulator-based optical system that allows the easy generation of these beams. Furthermore, a new alternative optical set-up that is devoid of moving elements is demonstrated, which simplifies this study. We experimentally verify the differences between pure and hybrid vector beams upon propagation. While the first ones remain stable, hybrid vector beams show Gouy phase effects that demonstrate an optical activity where the local polarization states rotate by an angle that depends on the propagation distance. Experimental results agree with the theory.

3.
Opt Express ; 25(20): 23773-23783, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041328

ABSTRACT

We report the realization of polarization sensitive split lens configurations. While split lenses can be used to easily generate different types of controlled structured light patterns, their realization has been limited so far to scalar beams. Here we propose and experimentally demonstrate their generalization to vectorial split lenses, leading to light patterns with customized intensity and state of polarization. We demonstrate how these polarization split lenses can be experimentally implemented by means of an optical system using two liquid crystal spatial light modulators, each one phase modulating one orthogonal polarization component. As a result, we demonstrate the experimental generation of vectorial beams with different shapes generated with these dual polarization split lenses. Excellent experimental results are provided in each case. The proposed technique is a simple method to generate structured light beams with polarization diversity, with potential applications in polarimetry, customized illuminators or quantum optics.

SELECTION OF CITATIONS
SEARCH DETAIL
...