Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Anat ; 244(2): 274-296, 2024 02.
Article in English | MEDLINE | ID: mdl-37935387

ABSTRACT

Palaeoneurology is a complex field as the object of study, the brain, does not fossilize. Studies rely therefore on the (brain) endocranial cast (often named endocast), the only available and reliable proxy for brain shape, size and details of surface. However, researchers debate whether or not specific marks found on endocasts correspond reliably to particular sulci and/or gyri of the brain that were imprinted in the braincase. The aim of this study is to measure the accuracy of sulcal identification through an experiment that reproduces the conditions that palaeoneurologists face when working with hominin endocasts. We asked 14 experts to manually identify well-known foldings in a proxy endocast that was obtained from an MRI of an actual in vivo Homo sapiens head. We observe clear differences in the results when comparing the non-corrected labels (the original labels proposed by each expert) with the corrected labels. This result illustrates that trying to reconstruct a sulcus following the very general known shape/position in the literature or from a mean specimen may induce a bias when looking at an endocast and trying to follow the marks observed there. We also observe that the identification of sulci appears to be better in the lower part of the endocast compared to the upper part. The results concerning specific anatomical traits have implications for highly debated topics in palaeoanthropology. Endocranial description of fossil specimens should in the future consider the variation in position and shape of sulci in addition to using models of mean brain shape. Moreover, it is clear from this study that researchers can perceive sulcal imprints with reasonably high accuracy, but their correct identification and labelling remains a challenge, particularly when dealing with extinct species for which we lack direct knowledge of the brain.


Subject(s)
Hominidae , Skull , Humans , Animals , Skull/anatomy & histology , Brain , Fossils , Magnetic Resonance Imaging , Biological Evolution
3.
Am J Phys Anthropol ; 174(1): 117-128, 2021 01.
Article in English | MEDLINE | ID: mdl-33111974

ABSTRACT

OBJECTIVES: The Krapina rock shelter has yielded a large assemblage of early Neandertals. Although endocranial volume (ECV) has been estimated for four individuals from the site, several published values that appear in the literature warrant revisiting. MATERIALS AND METHODS: We used virtual methods, including high-resolution surface models of fossils and 3D geometric morphometrics, to reconstruct endocasts and estimate ECV for five Krapina crania. We generated 10 reconstructions of each endocast to quantify missing data uncertainty. To assess the method and our ECV estimates, we applied these techniques to the Spy II Neandertal, and estimated ECV of a human reference endocast simulating the missing data of the Krapina fossils. RESULTS: We obtained an average ECV estimate of 1,526 cm3 for Spy II, consistent with previous research. Estimated ECV of juveniles Krapina 1 and 2 average 1,419 and 1,286 cm3 , respectively. Estimates for the relatively complete adults Krapina 3 and 6 range from 1,247 to 1,310 cm3 and 1,135 to 1,207 cm3 , respectively, while the more fragmentary Krapina 5 averaged 1,397 cm3 . The missing data simulation suggests more fragmentary crania yield more uncertain and possibly overestimated ECVs. CONCLUSIONS: We have provided new estimates of brain size of the Krapina Neandertals, including the first estimates for Krapina 2. Brain size at Krapina was similar to other pre-Würm Neandertals, within the range of but lower than the average of later Neandertals. Although the virtual approach overcomes many challenges of fossil preservation, our results are nevertheless subject to future revision.


Subject(s)
Cephalometry/methods , Neanderthals/anatomy & histology , Skull/anatomy & histology , Skull/diagnostic imaging , Animals , Anthropology, Physical , Female , Fossils , Hominidae/anatomy & histology , Humans , Imaging, Three-Dimensional , Male
4.
Am J Phys Anthropol ; 173(4): 768-775, 2020 12.
Article in English | MEDLINE | ID: mdl-33459351

ABSTRACT

OBJECTIVES: Common wisdom in paleoanthropology is that Neandertals had bigger brains than recent humans. Here we tested the hypothesis that there is no difference in brain size between Neandertals and recent humans while accounting for methodological variation and the makeup of both the Neandertal and recent human samples. MATERIALS AND METHODS: We examined endocranial volume (ECV) derived from virtually reconstructed endocasts of 11 Neandertals, six of which had associated femoral head diameters (FHD). Our recent human comparative dataset consisted of virtually measured ECV and associated FHD from 94 recent humans from the Robert J. Terry Anatomical Collection (63 male, 31 female). ECV of Neandertals and recent humans was compared using bootstrap resampling, repeating the analysis for two groupings of Neandertals (all and classic) and for three groupings of recent humans (all, males, and females). To examine brain size scaling, we completed an ordinary least squares regression of log (ECV) against log (FHD) for Neandertals and recent humans. RESULTS: The results of the bootstrap resampling analyses indicated that Neandertals only had significantly larger ECV when compared with recent human females. The regression between ECV and FHD suggested that Neandertals fall within the range of variation for larger humans. DISCUSSION: Our results demonstrate that Neandertals do not have uniquely large brains when compared with recent humans. Their brain size falls in the large end of the recent human range of variation, but does not exceed it. These results have implications for future research on Neandertal encephalization.


Subject(s)
Brain/anatomy & histology , Neanderthals/anatomy & histology , Skull/anatomy & histology , Adult , Aged , Aged, 80 and over , Animals , Anthropology, Physical , Cephalometry , Female , Fossils , Humans , Male , Middle Aged , Sex Characteristics , Young Adult
5.
Am J Phys Anthropol ; 170(1): 5-23, 2019 09.
Article in English | MEDLINE | ID: mdl-31228254

ABSTRACT

OBJECTIVES: The femoral remains recovered from the Lesedi Chamber are among the most complete South African fossil hominin femora discovered to date and offer new and valuable insights into the anatomy and variation of the bone in Homo naledi. While the femur is one of the best represented postcranial elements in the H. naledi assemblage from the Dinaledi Chamber, the fragmentary and commingled nature of the Dinaledi femoral remains has impeded the assessment of this element in its complete state. MATERIALS AND METHODS: Here we analyze and provide descriptions of three new relatively well-preserved femoral specimens of H. naledi from the Lesedi Chamber: U.W. 102a-001, U.W. 102a-003, and U.W. 102a-004. These femora are quantitatively and qualitatively compared to multiple extinct hominin femoral specimens, extant hominid taxa, and, where possible, each other. RESULTS: The Lesedi femora are morphologically similar to the Dinaledi femora for all overlapping regions, with differences limited to few traits of presently unknown significance. The Lesedi distal femur and mid-diaphysis preserve anatomy previously unidentified or unconfirmed in the species, including an anteroposteriorly expanded midshaft and anteriorly expanded patellar surface. The hypothesis that the Lesedi femoral sample may represent two individuals is supported. DISCUSSION: The Lesedi femora increase the range of variation of femoral morphology in H. naledi. Newly described features of the diaphysis and distal femur are either taxonomically uninformative or Homo-like. Overall, these three new femora are consistent with previous functional interpretations of the H. naledi lower limb as belonging to a species adapted for long distance walking and, possibly, running.


Subject(s)
Femur , Fossils , Hominidae , Animals , Anthropology, Physical , Biological Evolution , Femur/anatomy & histology , Femur/physiology , Hominidae/anatomy & histology , Hominidae/physiology , Humans , South Africa , Walking/physiology
6.
J Hum Evol ; 130: 72-82, 2019 05.
Article in English | MEDLINE | ID: mdl-31010545

ABSTRACT

Postnatal growth is one of the proximate means by which humans attain massive adult brain size. Humans are characterized by the maintenance of prenatal brain growth rates into the first postnatal year, as well as an overall extended period of growth. The evolution of this pattern is difficult to assess due to its relatively brief duration and the underrepresentation of well-preserved fossil individuals who died during this short period. In this study, I use Monte Carlo methods to reconstruct postnatal brain growth rates in Australopithecus afarensis and Australopithecus africanus, based on estimates of neonatal brain size and of likely brain size and age at death of infant specimens (A.L. 333-105, DIK-1-1, and Taung). Neonatal brain size is reconstructed from the empirical scaling relationship among catarrhines which humans follow, and conservative estimates of fossils' chronological ages and brain sizes are drawn from the literature. Simulated distributions of these values are used to calculate average annual rates (ARs) of brain growth and proportional size change from birth (PSC), which are compared to resampled statistics from humans, chimpanzees and gorillas of known age and sex. Simulated ARs and PSCs for A. afarensis are significantly lower than those of chimpanzees and gorillas. Both ARs and PSCs for A. africanus are similar to chimpanzee and gorilla values. These results indicate that although these early hominins were derived in some aspects of brain anatomy, high rates of brain growth did not appear until later in human evolution. Moreover, findings also imply that brain growth rates are not a simple function of adult brain size. This study provides important new information about the evolution of brain growth, despite limitations inherent in fossil samples.


Subject(s)
Biological Evolution , Brain/growth & development , Hominidae/growth & development , Animals , Anthropology, Physical , Female , Fossils , Male , Organ Size , Species Specificity
7.
J Hum Evol ; 122: 124-132, 2018 09.
Article in English | MEDLINE | ID: mdl-29983156

ABSTRACT

The Krapina costal sample was studied by Gorjanovic-Kramberger in the early twentieth century. He pointed out unique features in the sample such as the rounder rib cross-section, which was recently confirmed in other Neanderthal specimens. Round rib cross-sections are characteristic of Homo ergaster, suggesting this may be plesiomorphic for Pleistocene Homo, but it is unknown whether Homo antecessor also had this rib shape. Furthermore, the influence of allometry on the cross-sectional shape of ribs is still unknown. The large costal sample from Krapina allows us to address these issues. We quantified cross-section morphology at the midshaft throughout a closed curve of one landmark and nine sliding semilandmarks in the Krapina costal remains (n = 7), as well as in other Neanderthals (n = 50), H. antecessor (n = 3) and modern humans, both fossil (n = 12) and recent (n = 160). We used principal components analysis and mean comparisons to explore interspecific differences, regression analysis to investigate allometry, and partial least squares analysis to examine covariation of cross-section shape and overall rib morphology. Neanderthal cross-sections tended to be larger than those of recent humans except for the Krapina and Tabun remains. Regarding shape, inter-group differences were found only in the diaphragmatic thorax, where Neanderthal and H. antecessor ribs were statistically significantly rounder than those of modern humans. Allometry accounted for covariation of size on shape, but the Neandertal and modern human trajectories had different slopes. While our results based on the Krapina costal sample are similar to previous findings, we also make several new insights: 1) the cross-section morphology observed in Neanderthals was probably present in H. antecessor, albeit less marked; 2) the distinct roundness of Neanderthal cross-sections is not related to size; 3) rounder cross-sections are correlated with ribs presenting less curvature in cranial view and a low degree of torsion in recent humans. These results are important for the interpretation of fragmentary Neanderthal costal remains, and the fact that the differences are marked only in the diaphragmatic thorax could have implications for breathing kinematics.


Subject(s)
Fossils/anatomy & histology , Neanderthals/anatomy & histology , Ribs/anatomy & histology , Thorax/anatomy & histology , Animals , Anthropology, Physical , Biological Evolution , Croatia , Female , Hominidae/anatomy & histology , Humans , Male , Principal Component Analysis
8.
Am J Primatol ; 80(7): e22876, 2018 07.
Article in English | MEDLINE | ID: mdl-29797332

ABSTRACT

Despite many studies of chimpanzee brain size growth, intraspecific variation is under-explored. Brain size data from chimpanzees of the Taï Forest and the Yerkes Primate Research Center enable a unique glimpse into brain growth variation as age at death is known for individuals, allowing cross-sectional growth curves to be estimated. Because Taï chimpanzees are from the wild but Yerkes apes are captive, potential environmental effects on neural development can also be explored. Previous research has revealed differences in growth and health between wild and captive primates, but such habitat effects have yet to be investigated for brain growth. Here, I use an iterative curve fitting procedure to estimate brain growth and regression parameters for each population, statistically comparing growth models using bootstrapped confidence intervals. Yerkes and Taï brain sizes overlap at all ages, although the sole Taï newborn is at the low end of captive neonatal variation. Growth rate and duration are statistically indistinguishable between the two populations. Resampling the Yerkes sample to match the Taï sample size and age group composition shows that ontogenetic variation in the two groups are remarkably similar despite the latter's limited size. Best fit growth curves for each sample indicate cessation of brain size growth at around 2 years, earlier than has previously been reported. The overall similarity between wild and captive chimpanzees points to the canalization of brain growth in this species.


Subject(s)
Brain/growth & development , Pan troglodytes/growth & development , Animals , Animals, Newborn , Brain/anatomy & histology , Cote d'Ivoire , Ecosystem , Female , Male , Organ Size , Pan troglodytes/anatomy & histology
9.
J Hum Evol ; 125: 122-136, 2018 12.
Article in English | MEDLINE | ID: mdl-29169681

ABSTRACT

In the hominin fossil record, pelvic remains are sparse and are difficult to attribute taxonomically when they are not directly associated with craniodental material. Here we describe the pelvic remains from the Dinaledi Chamber in the Rising Star cave system, Cradle of Humankind, South Africa, which has produced hominin fossils of a new species, Homo naledi. Though this species has been attributed to Homo based on cranial and lower limb morphology, the morphology of some of the fragmentary pelvic remains recovered align more closely with specimens attributed to the species Australopithecus afarensis and Australopithecus africanus than they do with those of most (but not all) known species of the genus Homo. As with A. afarensis and A. africanus, H. naledi appears to have had marked lateral iliac flare and either a weakly developed or non-existent acetabulocristal buttress or a distinct, albeit weakly developed, acetabulospinous buttress. At the same time, H. naledi has robust superior pubic and ischiopubic rami and a short ischium with a narrow tuberoacetabular sulcus, similar to those found in modern humans. The fragmentary nature of the Dinaledi pelvic assemblage makes the attribution of sex and developmental age to individual specimens difficult, which in turn diminishes our ability to identify the number of individuals represented in the assemblage. At present, we can only confidently say that the pelvic fossils from Rising Star represent at least four individuals based on the presence of four overlapping right ischial fossils (whereas a minimum of 15 individuals can be identified from the Dinaledi dental assemblage). A primitive, early Australopithecus-like false pelvis combined with a derived Homo-like true pelvis is morphologically consistent with evidence from the lower ribcage and proximal femur of H. naledi. The overall similarity of H. naledi ilia to those of australopiths supports the inference, drawn from the observation of primitive pelvic morphology in the extinct species Homo floresiensis, that there is substantial variation in pelvic form within the genus Homo. In the light of these findings, we urge caution in making taxonomic attributions-even at the genus level-of isolated fossil ossa coxae.


Subject(s)
Fossils/anatomy & histology , Hominidae/anatomy & histology , Pelvis/anatomy & histology , Animals , Caves , South Africa
10.
Biol Lett ; 13(8)2017 08.
Article in English | MEDLINE | ID: mdl-28855415

ABSTRACT

Humans' prolonged somatic development and life history are unique among primates, yet their evolutionary origins remain unclear. Dental development has been used as a proxy to reconstruct life history evolution in the hominin clade and indicates a recent emergence of the human developmental pattern. Here, we analyse tooth formation and eruption in two developing dentitions of Homo naledi, a late-surviving, morphologically mosaic hominin species. Deciduous dental development is more similar to humans than to chimpanzees, probably reflecting hominin symplesiomorphy rather than bearing life history significance. The later stages of permanent tooth development present a mix of human- and chimpanzee-like patterns. Surprisingly, the M2 of H. naledi emerges late in the eruption sequence, a pattern previously unknown in fossil hominins and common in modern humans. This pattern has been argued to reflect a slow life history and is unexpected in a small-brained hominin. The geological age of H. naledi (approx. 300 kya), coupled with its small brain size and the dental development data presented here, raise questions about the relationship between dental development and other variables associated with life history.


Subject(s)
Tooth , Animals , Biological Evolution , Fossils , Hominidae , Odontogenesis , Pan troglodytes
11.
Am J Phys Anthropol ; 159(3): 394-409, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26748764

ABSTRACT

OBJECTIVES: Neandertals and humans are closely related but differ noticeably in adult morphology. Previous work has been equivocal as to the contribution of postnatal growth and development to these differences. Due to disparate preservation, most analyses focus on specific anatomies, reconstructed fossils, or limited sample sizes. The objective of this research is to highlight the importance of postnatal growth in expressing Neandertal-human distinctions in the craniofacial skeleton, using a large and unreconstructed Neandertal sample. MATERIALS/METHODS: A resampling approach is utilized to compare relative size change in 20 craniofacial dimensions between Neandertals (n = 42) and humans (n = 262). The large number of immature Neandertal samples within and between dental stages provides the necessary variation to test for growth differences. Nested resampling using human-human comparisons assesses the likelihood of observing human-Neandertal growth differences under the null hypothesis of similar ontogenetic variation. RESULTS: Humans and Neandertals undergo comparable levels of overall size change. However, we identify growth differences for a number of traits, helping explain some of the unique features of this fossil taxon. Nested resampling shows it is unlikely that a Neandertal-like maturation would be observed in a random ontogenetic sample of humans. DISCUSSION: Growth during adolescence appears to be fundamental in the expression of some Neandertal anatomies. Neandertal upper facial and nasal breadths appear to have expanded rapidly after puberty to account for differences between preadolescents and adults, and Neandertals and humans. Mandibular growth differences may relate to anterior tooth use to process foods and paramastication during Neandertal maturation.


Subject(s)
Fossils , Mandible/anatomy & histology , Skull/anatomy & histology , Adult , Animals , Anthropology, Physical , Anthropometry , Child , Humans , Neanderthals
12.
Elife ; 42015 Sep 10.
Article in English | MEDLINE | ID: mdl-26354291

ABSTRACT

Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa.


Subject(s)
Hominidae/anatomy & histology , Hominidae/classification , Animals , Anthropometry , Humans , Phylogeny , South Africa
13.
J Hum Evol ; 81: 41-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25771994

ABSTRACT

The Mojokerto calvaria has been central to assessment of brain growth in Homo erectus, but different analytical approaches and uncertainty in the specimen's age at death have hindered consensus on the nature of H. erectus brain growth. We simulate average annual rates (AR) of absolute endocranial volume (ECV) growth and proportional size change (PSC) in H. erectus, utilizing estimates of H. erectus neonatal ECV and a range of ages for Mojokerto. These values are compared with resampled ARs and PSCs from ontogenetic series of humans, chimpanzees, and gorillas from birth to six years. Results are consistent with other studies of ECV growth in extant taxa. There is extensive overlap in PSC between all living species through the first postnatal year, with continued but lesser overlap between humans and chimpanzees to age six. Human ARs are elevated above those of apes, although there is modest overlap up to 0.50 years. Ape ARs overlap throughout the sequence, with gorillas slightly elevated over chimpanzees up to 0.50 years. Simulated H. erectus PSCs can be found in all living species by 0.50 years, and the median falls below the human and chimpanzee ranges after 2.5 years. H. erectus ARs are elevated above those of all extant taxa prior to 0.50 years, and after two years they fall out of the human range but are still above ape ranges. A review of evidence for the age at death of Mojokerto supports an estimate of around one year, indicating absolute brain growth rates in the lower half of the human range. These results point to secondary altriciality in H. erectus, implying that key human adaptations for increasing the energy budget of females may have been established by at least 1 Ma.


Subject(s)
Brain/growth & development , Fossils/anatomy & histology , Hominidae/growth & development , Skull/growth & development , Animals , Biological Evolution , Brain/anatomy & histology , Gorilla gorilla/anatomy & histology , Gorilla gorilla/growth & development , Hominidae/anatomy & histology , Humans , Pan troglodytes/anatomy & histology , Pan troglodytes/growth & development , Skull/anatomy & histology
14.
Am J Phys Anthropol ; 154(3): 436-46, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24820665

ABSTRACT

Australopithecus robustus has a distinct mandibular anatomy, with a broad and deep corpus and a tall, relatively upright ramus. How this anatomy arose through development is unknown, as gross mandibular size and shape change have not been thoroughly examined quantitatively in this species. Herein, I investigate A. robustus mandibular growth by comparing its ontogenetic series with a sample of recent humans, examining age-related size variation in 28 linear measurements. Resampling is used to compare the amount of proportional size change occurring between tooth eruption stages in the small and fragmentary A. robustus sample, with that of a more complete human skeletal population. Ontogenetic allometry of corpus robusticity is also assessed with least squares regression. Results show that nearly all measurements experience greater average increase in A. robustus than in humans. Most notably, A. robustus corpus breadth undergoes a spurt of growth before eruption of M1 , likely due in part to delayed resorption of the ramus root on the lateral corpus. Between the occlusion of M1 and M2 , nearly all dimensions experience greater proportional size change in A. robustus. Nested resampling analysis affirms that this pattern of growth differences between species is biologically significant, and not a mere byproduct of the fossil sample size. Some species differences are likely a function of postcanine megadontia in A. robustus, although the causes of other differences are less clear. This study demonstrates an important role of the postnatal period for mandibular shape development in this species.


Subject(s)
Fossils , Mandible/anatomy & histology , Tooth Eruption , Tooth/anatomy & histology , Animals , Hominidae , Humans , Mandible/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...