Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol Methods ; 249: 79-84, 2017 11.
Article in English | MEDLINE | ID: mdl-28855093

ABSTRACT

With its small size and low cost, the hand-held MinION sequencer is a powerful tool for in-field surveillance. Using a metagenomic approach, it allows non-targeted detection of viruses in a sample within a few hours. This study aimed to determine the ability of the MinION to metagenomically detect and characterise a virus from an infected mosquito. RNA was extracted from an Aedes notoscriptus mosquito infected with Ross River virus (RRV), converted into cDNA and sequenced on the MinION. Bioinformatic analysis of the MinION reads led to detection of full-length RRV, with reads of up to 2.5kb contributing to the assembly. The cDNA was also sequenced on the MiSeq sequencer, and both platforms recovered the RRV genome with >98% accuracy. This proof of concept study demonstrates the metagenomic detection of an arbovirus, using the MinION, directly from a mosquito with minimal sample purification.


Subject(s)
Aedes/virology , High-Throughput Nucleotide Sequencing/instrumentation , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Ross River virus/genetics , Ross River virus/isolation & purification , Animals , Computational Biology , DNA, Complementary , Genome, Viral , High-Throughput Nucleotide Sequencing/economics , Nanopores , Proof of Concept Study , Sequence Analysis, DNA
2.
BMC Genomics ; 16: 611, 2015 Aug 16.
Article in English | MEDLINE | ID: mdl-26275991

ABSTRACT

BACKGROUND: Field pea (Pisum sativum L.) is a cool-season grain legume that is cultivated world-wide for both human consumption and stock-feed purposes. Enhancement of genetic and genomic resources for field pea will permit improved understanding of the control of traits relevant to crop productivity and quality. Advances in second-generation sequencing and associated bioinformatics analysis now provide unprecedented opportunities for the development of such resources. The objective of this study was to perform transcriptome sequencing and characterisation from two genotypes of field pea that differ in terms of seed and plant morphological characteristics. RESULTS: Transcriptome sequencing was performed with RNA templates from multiple tissues of the field pea genotypes Kaspa and Parafield. Tissue samples were collected at various growth stages, and a total of 23 cDNA libraries were sequenced using Illumina high-throughput sequencing platforms. A total of 407 and 352 million paired-end reads from the Kaspa and Parafield transcriptomes, respectively were assembled into 129,282 and 149,272 contigs, which were filtered on the basis of known gene annotations, presence of open reading frames (ORFs), reciprocal matches and degree of coverage. Totals of 126,335 contigs from Kaspa and 145,730 from Parafield were subsequently selected as the reference set. Reciprocal sequence analysis revealed that c. 87% of contigs were expressed in both cultivars, while a small proportion were unique to each genotype. Reads from different libraries were aligned to the genotype-specific assemblies in order to identify and characterise expression of contigs on a tissue-specific basis, of which 87% were expressed in more than one tissue, while others showed distinct expression patterns in specific tissues, providing unique transcriptome signatures. CONCLUSION: This study provided a comprehensive assembled and annotated transcriptome set for field pea that can be used for development of genetic markers, in order to assess genetic diversity, construct linkage maps, perform trait-dissection and implement whole-genome selection strategies in varietal improvement programs, as well to identify target genes for genetic modification approaches on the basis of annotation and expression analysis. In addition, the reference field pea transcriptome will prove highly valuable for comparative genomics studies and construction of a finalised genome sequence.


Subject(s)
Gene Expression Profiling/methods , Pisum sativum/genetics , RNA, Plant/analysis , Sequence Analysis, RNA/methods , Databases, Nucleic Acid , Genotype , Molecular Sequence Data , Organ Specificity , Pisum sativum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...