Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 147(4): 1344-1361, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37931066

ABSTRACT

Neuromyelitis optica spectrum disorder (NMOSD) is a CNS autoimmune inflammatory disease mediated by T helper 17 (Th17) and antibody responses to the water channel protein, aquaporin 4 (AQP4), and associated with astrocytopathy, demyelination and axonal loss. Knowledge about disease pathogenesis is limited and the search for new therapies impeded by the absence of a reliable animal model. In our work, we determined that NMOSD is characterized by decreased IFN-γ receptor signalling and that IFN-γ depletion in AQP4201-220-immunized C57BL/6 mice results in severe clinical disease resembling human NMOSD. Pathologically, the disease causes autoimmune astrocytic and CNS injury secondary to cellular and humoral inflammation. Immunologically, the absence of IFN-γ allows for increased expression of IL-6 in B cells and activation of Th17 cells, and generation of a robust autoimmune inflammatory response. Consistent with NMOSD, the experimental disease is exacerbated by administration of IFN-ß, whereas repletion of IFN-γ, as well as therapeutic targeting of IL-17A, IL-6R and B cells, ameliorates it. We also demonstrate that immune tolerization with AQP4201-220-coupled poly(lactic-co-glycolic acid) nanoparticles could both prevent and effectively treat the disease. Our findings enhance the understanding of NMOSD pathogenesis and provide a platform for the development of immune tolerance-based therapies, avoiding the limitations of the current immunosuppressive therapies.


Subject(s)
Neuromyelitis Optica , Humans , Animals , Mice , Neuromyelitis Optica/pathology , Aquaporin 4 , Interferon-gamma/metabolism , Mice, Inbred C57BL , B-Lymphocytes , Autoantibodies/metabolism
2.
Front Immunol ; 13: 887649, 2022.
Article in English | MEDLINE | ID: mdl-36059473

ABSTRACT

Cancer treatment utilizing infusion therapies to enhance the patient's own immune response against the tumor have shown significant functionality in a small subpopulation of patients. Additionally, advances have been made in the utilization of nanotechnology for the treatment of disease. We have previously reported the potent effects of 3-4 daily intravenous infusions of immune modifying poly(lactic-co-glycolic acid) (PLGA) nanoparticles (IMPs; named ONP-302) for the amelioration of acute inflammatory diseases by targeting myeloid cells. The present studies describe a novel use for ONP-302, employing an altered dosing scheme to reprogram myeloid cells resulting in significant enhancement of tumor immunity. ONP-302 infusion decreased tumor growth via the activation of the cGAS/STING pathway within myeloid cells, and subsequently increased NK cell activation via an IL-15-dependent mechanism. Additionally, ONP-302 treatment increased PD-1/PD-L1 expression in the tumor microenvironment, thereby allowing for functionality of anti-PD-1 for treatment in the B16.F10 melanoma tumor model which is normally unresponsive to monotherapy with anti-PD-1. These findings indicate that ONP-302 allows for tumor control via reprogramming myeloid cells via activation of the STING/IL-15/NK cell mechanism, as well as increasing anti-PD-1 response rates.


Subject(s)
Melanoma, Experimental , Nanoparticles , Animals , Humans , Immunotherapy/methods , Interleukin-15 , Melanoma, Experimental/therapy , Membrane Proteins/metabolism , Myeloid Cells/metabolism , Nucleotidyltransferases/metabolism , Tumor Microenvironment
3.
Gut Microbes ; 12(1): 1667723, 2020 11 09.
Article in English | MEDLINE | ID: mdl-31583949

ABSTRACT

Group 1 Innate Lymphoid Cells (which include Natural Killer cells and ILC1s) aid in gut anti-bacterial defense through the production of IFNγ, which is critical for mobilizing protective responses against enteric pathogens. When intestinal epithelial barrier integrity is compromised, commensal bacteria are likely to translocate from the gut lumen into the lamina propria. Few studies have addressed the mechanisms by which commensal bacteria impact the function of gut Group 1 ILCs, especially ILC1s. Utilizing an in vitro human colonic lamina propria mononuclear cell (LPMC) model, we evaluated Group 1 ILC cytokine and cytolytic protein production in response to a panel of enteric Gram-positive and Gram-negative commensal and pathogenic bacteria. IFNγ-production by NK cells and ILC1s was significantly increased after LPMC exposure to Gram-negative commensal or pathogenic bacteria, but not after exposure to the Gram-positive bacteria commensals tested. Stimulation of IFNγ production from Group 1 ILCs was not through direct recognition of bacteria by NK cells or ILC1s, but rather required accessory cells within the LPMC population. Myeloid dendritic cells generated IL-12p70, IL-18, and IL-1ß upon exposure to enteric bacteria and these cytokines contributed to Group 1 ILC production of IFNγ. Furthermore, Gram-negative commensal or pathogenic bacteria induced significant expression of Granzyme B in NK cells and ILC1s. Overall, these data demonstrate that some enteric commensal bacteria indirectly induce inflammatory cytokine production and cytolytic protein expression from human colonic Group 1 ILCs, a process which could contribute to inflammation in the setting of microbial translocation.


Subject(s)
Dendritic Cells/immunology , Gastrointestinal Microbiome/immunology , Granzymes/immunology , Interferon-gamma/immunology , Intestinal Mucosa/immunology , Killer Cells, Natural/immunology , Gastrointestinal Microbiome/physiology , Humans , Immunity, Innate/immunology , Inflammation/microbiology , Interleukin-12 Subunit p35/immunology , Interleukin-18/immunology , Interleukin-1beta/immunology , Intestinal Mucosa/cytology , Intestinal Mucosa/microbiology , Salmonella typhimurium/immunology , Tight Junctions
4.
Ann Clin Transl Neurol ; 6(12): 2566-2572, 2019 12.
Article in English | MEDLINE | ID: mdl-31730293

ABSTRACT

Narcolepsy type 1 (NT1) is caused by severe loss of the orexin neurons, and is highly associated with HLA DQB1*06:02. Using intracellular cytokine staining, we observed a higher frequency of IFN-γ- and TNF-α-producing CD4+ and CD8+ T-cells in response to orexins in 27 children with NT1 compared to 15 healthy control children. Conversely, no such difference was observed between 14 NT1 and 16 HC adults. In addition, priming with flu peptides amplified the T-cell response to orexins in children with NT1. Our data suggests that NT1 may be caused by an autoimmune T-cell response to orexins, possibly triggered by flu antigens.


Subject(s)
Autoimmunity/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/immunology , Narcolepsy/immunology , Orexins/immunology , Tumor Necrosis Factor-alpha/immunology , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Narcolepsy/blood , Narcolepsy/etiology , Young Adult
5.
Front Immunol ; 10: 649, 2019.
Article in English | MEDLINE | ID: mdl-30984202

ABSTRACT

Innate lymphoid cells (ILCs) are a diverse family of cells that play critical roles in mucosal immunity. One subset of the ILC family, Group 3 ILCs (ILC3s), has been shown to aid in gut homeostasis through the production of IL-22. IL-22 promotes gut homeostasis through its functional effect on the epithelial barrier. When gut epithelial barrier integrity is compromised, such as in Human Immunodeficiency Virus (HIV) infection and inflammatory bowel disease (IBD), microbes from the gut lumen translocate into the lamina propria, inducing a multitude of potentially pathogenic immune responses. In murine models of bacterial infection, there is evidence that bacteria can induce pro-inflammatory IFNγ production in ILC3s. However, the impact of diverse translocating bacteria, particularly commensal bacteria, in dictating IFNγ versus IL-22 production by human gut ILC3s remains unclear. Here, we utilized an in vitro human lamina propria mononuclear cell (LPMC) model to evaluate ILC3 cytokine production in response to a panel of enteric Gram-positive and Gram-negative commensal and pathogenic bacteria and determined potential mechanisms by which these cytokine responses were induced. The percentages of IL-22-producing ILC3s, but not IFNγ-producing ILC3s, were significantly increased after LPMC exposure to both Gram-positive and Gram-negative commensal or pathogenic bacterial stimuli. Stimulation of IL-22 production from ILC3s was not through direct recognition of bacterial antigen by ILC3s, but rather required the help of accessory cells within the LPMC population. CD11c+ myeloid dendritic cells generated IL-23 and IL-1ß in response to enteric bacteria and contributed to ILC3 production of IL-22. Furthermore, ligation of the natural cytotoxicity receptor NKp44 on ILC3s in response to bacteria stimulation also significantly increased the percentage of IL-22-producing ILC3s. Overall, these data demonstrate that human gut microbiota, including commensal bacteria, indirectly modulate colonic ILC3 function to induce IL-22, but additional signals are likely required to induce IFNγ production by colonic ILC3s in the setting of inflammation and microbial translocation.


Subject(s)
Colon , Gastrointestinal Microbiome/immunology , Gram-Negative Bacteria/immunology , Gram-Positive Bacteria/immunology , Immunity, Innate , Interferon-gamma/immunology , Interleukins/immunology , Intestinal Mucosa , Lymphocytes/immunology , Bacterial Translocation/immunology , Colon/immunology , Colon/microbiology , Humans , Interleukin-1beta/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Interleukin-22
6.
J Acquir Immune Defic Syndr ; 76(4): 431-437, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28825942

ABSTRACT

BACKGROUND: HIV-1 infection is associated with intestinal inflammation, changes in the enteric microbiota (dysbiosis), and intestinal epithelial cell damage. NKp44 innate lymphoid cells (ILCs) play an important role in epithelial barrier maintenance through the production of interleukin (IL)-22 but also display functional plasticity and can produce inflammatory cytokines [eg, interferon gamma (IFNγ)] in response to cytokine milieu and stimulatory signals. The objective of this pilot study was to enumerate frequencies of IL-22 and IFNγ-expressing colonic NKp44 ILCs during untreated, chronic HIV-1 infection. SETTING: A cross-sectional study was performed to compare numbers of cytokine-expressing ILCs in colonic biopsies of untreated, chronic HIV-1 infected (n = 22), and uninfected (n = 10) study participants. Associations between cytokine ILC and previously established measures of virological, immunological, and microbiome indices were analyzed. METHODS: Multicolor flow cytometry was used to measure the absolute number of colonic CD3NKp44CD56 ILCs expressing IL-22 or IFNγ after in vitro mitogenic stimulation. RESULTS: Numbers of colonic NKp44 ILCs that expressed IFNγ were significantly higher in HIV-1 infected versus uninfected persons and positively correlated with relative abundances of dysbiotic bacterial species in the Xanthomonadaceae and Prevotellaceae bacterial families and with colonic myeloid dendritic cell and T-cell activation. CONCLUSION: Higher numbers of inflammatory colonic ILCs during untreated chronic HIV-1 infection that associated with dysbiosis and colonic myeloid dendritic cell and T-cell activation suggest that inflammatory ILCs may contribute to gut mucosal inflammation and epithelial barrier breakdown, important features of HIV-1 mucosal pathogenesis.


Subject(s)
Dysbiosis/complications , Dysbiosis/immunology , HIV Infections/complications , HIV Infections/immunology , Immunity, Mucosal/immunology , Intestinal Mucosa/immunology , Lymphocyte Activation , Colitis/complications , Colitis/immunology , Colitis/pathology , Cross-Sectional Studies , Dysbiosis/pathology , Flow Cytometry , HIV Infections/pathology , HIV Infections/virology , HIV-1/immunology , Humans , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...