Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
medRxiv ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38712165

ABSTRACT

Life expectancy continues to increase in the high-income world due to advances in medical care; however, quality of life declines with increasing age due to normal aging processes. Current research suggests that various aspects of aging are genetically modulated and thus may be slowed via genetic modification. Here, we show evidence for epigenetic modulation of the aging process in the brain from over 1800 individuals as part of the Framingham Heart Study. We investigated the methylation of genes in the protocadherin (PCDH) clusters, including the alpha (PCHDA), beta (PCDHB), and gamma (PCDHG) clusters. Reduced PCDHG, elevated PCDHA, and elevated PCDHB methylation levels were associated with substantial reductions in the rate of decline of regional white matter volume as well as certain cognitive skills, independent of overall accelerated or retarded aging as estimated by a DNA clock. These results are likely due to the different effects of the expression of genes in the alpha, beta, and gamma PCHD clusters and suggest that experience-based aging processes related to a decline in regional brain volume and select cognitive skills may be slowed via targeted epigenetic modifications.

2.
Lancet Neurol ; 23(5): 500-510, 2024 May.
Article in English | MEDLINE | ID: mdl-38631766

ABSTRACT

BACKGROUND: In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS: In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS: We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION: Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING: None.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Down Syndrome , Male , Female , Humans , Adult , Alzheimer Disease/genetics , Cross-Sectional Studies , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Amyloid , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Cognitive Dysfunction/pathology
3.
medRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496591

ABSTRACT

INTRODUCTION: The reliability of plasma Alzheimer's disease (AD) biomarkers can be compromised by protease-induced degradation. This limits the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT). This study conducted a comparative analysis of blood biomarker stability in traditional ethylenediaminetetraacetic acid (EDTA) tubes versus BD™ P100 collection tubes, the latter being coated with a protease inhibitor cocktail. The stability of six plasma AD biomarkers was evaluated over time under RT conditions. METHODS: We evaluated three experimental approaches. In Approach 1, pooled plasma samples underwent storage at RT for up to 96 hours. In Approach 2, plasma samples isolated upfront from whole blood collected into EDTA or P100 tubes were stored at RT for 0h or 24h before biomarker measurements. In Approach 3, whole blood samples were collected into paired EDTA or P100 tubes, followed by storage at RT for 0h or 24h before isolating the plasma for analyses. Biomarkers were measured with Single Molecule Array (Simoa) and immunoprecipitation-mass spectrometry (IP-MS) assays. RESULTS: Both the IP-MS and Simoa methods revealed that the use of P100 tubes significantly improved the stability of Aß42 and Aß40 across all approaches. Additionally, the Aß42/Aß40 ratio levels were significantly stabilized only in the IP-MS assay in Approach 3. No significant differences were observed in the levels of plasma p-tau181, GFAP, and NfL for samples collected using either tube type in any of the approaches. CONCLUSION: Supplementation of blood collection tubes with protease inhibitors could reduce the protease-induced degradation of plasma Aß42 and Aß40, and the Aß ratio for IP-MS assay. This has crucial implications for preanalytical procedures, particularly in resource-limited settings.

4.
Alzheimers Dement ; 20(1): 366-375, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37641428

ABSTRACT

INTRODUCTION: Down syndrome (DS) is a genetic cause of early-onset Alzheimer's disease (AD). The National Institute on Aging-Alzheimer's Association AT(N) Research Framework is a staging model for AD biomarkers but has not been assessed in DS. METHOD: Data are from the Alzheimer's Biomarker Consortium-Down Syndrome. Positron emission tomography (PET) amyloid beta (Aß; 15 mCi of [11 C]Pittsburgh compound B) and tau (10 mCi of [18 F]AV-1451) were used to classify amyloid (A) -/+ and tau (T) +/-. Hippocampal volume classified neurodegeneration (N) -/+. The modified Cued Recall Test assessed episodic memory. RESULTS: Analyses included 162 adults with DS (aged M = 38.84 years, standard deviation = 8.41). Overall, 69.8% of participants were classified as A-/T-/(N)-, 11.1% were A+/T-/(N)-, 5.6% were A+/T+/(N)-, and 9.3% were A+/T+/(N)+. Participants deemed cognitively stable were most likely to be A-T-(N)- and A+T-(N)-. Tau PET (T+) most closely aligning with memory impairment and AD clinical status. DISCUSSION: Findings add to understanding of AT(N) biomarker profiles in DS. HIGHLIGHTS: Overall, 69.8% of adults with Down syndrome (DS) aged 25 to 61 years were classified as amyloid (A)-/tau (T)-/neurodegeneration (N)-, 11.1% were A+/T-/(N)-, 5.6% were A+/T+/(N)-, and 9.3% were A+/T+/(N)+. The AT(N) profiles were associated with clinical Alzheimer's disease (AD) status and with memory performance, with the presence of T+ aligned with AD clinical symptomology. Findings inform models for predicting the transition to the prodromal stage of AD in DS.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Down Syndrome , Adult , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/complications , Down Syndrome/diagnostic imaging , Down Syndrome/complications , Amyloid beta-Peptides , tau Proteins , Positron-Emission Tomography/methods , Biomarkers , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/complications
5.
Alzheimers Dement ; 20(1): 388-398, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37641577

ABSTRACT

INTRODUCTION: Almost all individuals with Down syndrome (DS) will develop neuropathological features of Alzheimer's disease (AD). Understanding AD biomarker trajectories is necessary for DS-specific clinical interventions and interpretation of drug-related changes in the disease trajectory. METHODS: A total of 177 adults with DS from the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) underwent positron emission tomography (PET) and MR imaging. Amyloid-beta (Aß) trajectories were modeled to provide individual-level estimates of Aß-positive (A+) chronicity, which were compared against longitudinal tau change. RESULTS: Elevated tau was observed in all NFT regions following A+ and longitudinal tau increased with respect to A+ chronicity. Tau increases in NFT regions I-III was observed 0-2.5 years following A+. Nearly all A+ individuals had tau increases in the medial temporal lobe. DISCUSSION: These findings highlight the rapid accumulation of amyloid and early onset of tau relative to amyloid in DS and provide a strategy for temporally characterizing AD neuropathology progression that is specific to the DS population and independent of chronological age. HIGHLIGHTS: Longitudinal amyloid trajectories reveal rapid Aß accumulation in Down syndrome NFT stage tau was strongly associated with A+ chronicity Early longitudinal tau increases were observed 2.5-5 years after reaching A.


Subject(s)
Alzheimer Disease , Down Syndrome , Adult , Humans , Down Syndrome/complications , tau Proteins , Alzheimer Disease/pathology , Amyloid beta-Peptides , Amyloid , Positron-Emission Tomography/methods , Biomarkers
6.
J Alzheimers Dis ; 95(1): 213-225, 2023.
Article in English | MEDLINE | ID: mdl-37482997

ABSTRACT

BACKGROUND: Trisomy 21 causes Down syndrome (DS) and is a recognized cause of early-onset Alzheimer's disease (AD). OBJECTIVE: The current study sought to determine if premorbid intellectual disability level (ID) was associated with variability in age-trajectories of AD biomarkers and cognitive impairments. General linear mixed models compared the age-trajectory of the AD biomarkers PET Aß and tau and cognitive decline across premorbid ID levels (mild, moderate, and severe/profound), in models controlling trisomy type, APOE status, biological sex, and site. METHODS: Analyses involved adults with DS from the Alzheimer's Biomarkers Consortium-Down Syndrome. Participants completed measures of memory, mental status, and visuospatial ability. Premorbid ID level was based on IQ or mental age scores prior to dementia concerns. PET was acquired using [11C] PiB for Aß, and [18F] AV-1451 for tau. RESULTS: Cognitive data was available for 361 participants with a mean age of 45.22 (SD = 9.92) and PET biomarker data was available for 154 participants. There was not a significant effect of premorbid ID level by age on cognitive outcomes. There was not a significant effect of premorbid ID by age on PET Aß or on tau PET. There was not a significant difference in age at time of study visit of those with mild cognitive impairment-DS or dementia by premorbid ID level. CONCLUSION: Findings provide robust evidence of a similar time course in AD trajectory across premorbid ID levels, laying the groundwork for the inclusion of individuals with DS with a variety of IQ levels in clinical AD trials.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Down Syndrome , Intellectual Disability , Humans , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Down Syndrome/complications , Down Syndrome/diagnostic imaging , Down Syndrome/psychology , Intellectual Disability/complications , Intellectual Disability/diagnostic imaging , Intellectual Disability/psychology , Cognitive Dysfunction/psychology , Biomarkers , Amyloid beta-Peptides , tau Proteins , Positron-Emission Tomography
7.
J Nucl Med ; 64(3): 452-459, 2023 03.
Article in English | MEDLINE | ID: mdl-36396455

ABSTRACT

6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]MK6240) tau PET tracer quantifies the brain tau neurofibrillary tangle load in Alzheimer disease. The aims of our study were to test the stability of common reference region estimates in the cerebellum over time and across diagnoses and evaluate the effects of age-related and off-target retention on the longitudinal quantification of [18F]MK6240 in target regions. Methods: We assessed reference, target, age-related, and off-target regions in 125 individuals across the aging and Alzheimer disease spectrum with longitudinal [18F]MK6240 SUVs and SUV ratios (SUVRs) (mean ± SD, 2.25 ± 0.40 y of follow-up). We obtained SUVR from meninges, exhibiting frequent off-target retention with [18F]MK6240. Additionally, we compared tracer uptake between 37 cognitively unimpaired young (CUY) (mean age, 23.41 ± 3.33 y) and 27 cognitively unimpaired older (CU) adults (amyloid-ß-negative and tau-negative, 58.50 ± 9.01 y) to identify possible nonvisually apparent, age-related signal. Two-tailed t testing and Pearson correlation testing were used to determine the difference between groups and associations between changes in region uptake, respectively. Results: Inferior cerebellar gray matter SUV did not differ on the basis of diagnosis and amyloid-ß status, cross-sectionally and over time. [18F]MK6240 uptake significantly differed between CUY and CU adults in the putamen or pallidum (affecting ∼75% of the region) and in the Braak II region (affecting ∼35%). Changes in meningeal and putamen or pallidum SUVRs did not significantly differ from zero, nor did they vary across diagnostic groups. We did not observe significant correlations between longitudinal changes in age-related or meningeal off-target retention and changes in target regions, whereas changes in all target regions were strongly correlated. Conclusion: Inferior cerebellar gray matter was similar across diagnostic groups cross-sectionally and stable over time and thus was deemed a suitable reference region for quantification. Despite not being visually perceptible, [18F]MK6240 has age-related retention in subcortical regions, at a much lower magnitude but topographically colocalized with significant off-target signal of the first-generation tau tracers. The lack of correlation between changes in age-related or meningeal and target retention suggests little influence of possible off-target signals on longitudinal tracer quantification. Nevertheless, the age-related retention in the Braak II region needs to be further investigated. Future postmortem studies should elucidate the source of the newly reported age-related [18F]MK6240 signal, and in vivo studies should further explore its impact on tracer quantification.


Subject(s)
Alzheimer Disease , Humans , Young Adult , Adult , Alzheimer Disease/diagnostic imaging , Positron-Emission Tomography , Neurofibrillary Tangles/metabolism , Brain/metabolism , Amyloid beta-Peptides , tau Proteins/metabolism
8.
J Policy Pract Intellect Disabil ; 19(4): 408-418, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36570324

ABSTRACT

Background: Adults with Down syndrome have an increased risk of aging-related physical and mental health conditions and experience them at an earlier age than the general population. There is a need to investigate modifiable lifestyle factors that may reduce risk for these conditions. Method: The present study investigated the associations between physical activity (i.e., sedentary behavior and moderate-to-vigorous activity) assessed via accelerometer across 7 days and caregiver-reported physical and mental health of 66 non-demented middle-aged adults with Down Syndrome aged 25-55 years (52% female). Results: Regression analyses indicated that more time spent in moderate intensity physical activity was associated with less risk of sleep apnea (b = -.031 p = .004) and endocrine/metabolic conditions (b = -.046 p = .009), and lower total number of physical health conditions (b = -.110 p =.016) and anxiety disorders (b = -.021 p =.049) after controlling for relevant sociodemographics. After also adjusting for BMI, the association between time spent in moderate intensity physical activity and sleep apnea (b=-.035, p = .002), endocrine/metabolic conditions (b=-.033, p = .045) and total physical health (b=-.091, p =.026) remained significant Unexpectedly, time spent in sedentary behavior was negatively associated with musculoskeletal conditions (b=-.017, p = .044). Conclusion: Findings indicate important associations between physical activity in everyday life and the physical and mental health of adults with Down syndrome. Social policies and interventions aimed at reducing time spent sitting around (i.e., sedentary behavior) and encouraging moderate-to-vigorous activity may be a low-burden and low-cost mechanism for fostering healthy physical and mental aging in the Down syndrome population.

9.
Int Rev Res Dev Disabil ; 63: 247-267, 2022.
Article in English | MEDLINE | ID: mdl-36545326

ABSTRACT

The National Institutes of Health formulated the Outreach and Engagement Working Group in Fall of 2019 to support the objectives of the INCLUDE Project (INvestigation of Co-occurring conditions across the Lifespan to Understand Down syndromE). This Working Group consisted of a multi-disciplinary team of stakeholders in research on Down syndrome that met to discuss best practices for outreach and engagement to Down syndrome communities, with an emphasis on representation and diversity. This review and consensus paper describes the importance of increasing representation in DS research for future cohort building and summarizes the priority issues identified by the Working Group members. An overview of Working Group activities is then presented, followed by consensus recommendations and a discussion of future opportunities and challenges.

10.
Neurobiol Aging ; 119: 36-45, 2022 11.
Article in English | MEDLINE | ID: mdl-35964542

ABSTRACT

This study investigates whether tau has (i) an independent effect from amyloid-ß on changes in cognitive and functional performance and (ii) a synergistic relationship with amyloid-ß in the exacerbation of decline in aging Down syndrome (DS). 105 participants with DS underwent baseline PET [18F]-AV1451 and PET [11C]PiB scans to quantify tau deposition in Braak regions II-VI and the Striatum and amyloid-ß status respectively. Linear Mixed Effects models were implemented to assess how tau and amyloid-ß deposition are related to change over three time points. Tau was a significant independent predictor of cognitive and functional change. The three-way interaction between time, [11C]PiB status and tau was significant in the models of episodic memory and visuospatial cognition. Baseline tau is a significant predictor of cognitive and functional decline, over and above the effect of amyloid-ß status. Results suggest a synergistic relationship between amyloid-ß status and tau as predictors of change in memory and visuospatial cognition.


Subject(s)
Amyloid beta-Peptides , Cognitive Dysfunction , Down Syndrome , tau Proteins , Amyloid beta-Peptides/metabolism , Brain/metabolism , Cognition/physiology , Cognitive Aging/physiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/psychology , Down Syndrome/diagnostic imaging , Down Syndrome/metabolism , Down Syndrome/psychology , Humans , Positron-Emission Tomography/methods , tau Proteins/metabolism
11.
Alzheimers Dement (Amst) ; 14(1): e12256, 2022.
Article in English | MEDLINE | ID: mdl-35386473

ABSTRACT

Introduction: Drawing on the amyloid/tau/neurodegeneration (AT[N]) model, the study examined whether the tau positron emission tomography (PET) biomarker [18F]AV-1451 was associated with episodic memory problems beyond what was predicted by the amyloid beta (Aß) PET in Down syndrome (DS). Methods: Data from 123 non-demented adults with DS (M  = 47 years, standard deviation = 6.34) were analyzed. The Cued Recall Test assessed episodic memory. Tau PET standardized update value ratio (SUVR) was assessed across Braak regions as continuous and binary (high tau [TH] vs. low tau [TL]) variable. Global PET Aß SUVR was assessed as binary variable (Aß- vs. Aß+). Results: In models adjusting for controls, tau SUVR was negatively associated with episodic memory performance in the Aß+ but not Aß- group. The Aß+/TH group evidenced significantly worse episodic memory than the Aß+/TL group. Discussion: Similar to late-onset and autosomal dominant Alzheimer's disease (AD), high tau was an indicator of early prodromal AD in DS.

12.
Neurobiol Aging ; 115: 112-121, 2022 07.
Article in English | MEDLINE | ID: mdl-35418341

ABSTRACT

Down's syndrome results from trisomy of chromosome 21, a genetic change which also confers a probable 100% risk for the development of Alzheimer's disease neuropathology (amyloid plaque and neurofibrillary tangle formation) in later life. We aimed to assess the effectiveness of diffusion-weighted imaging and connectomic modelling for predicting brain amyloid plaque burden, baseline cognition and longitudinal cognitive change using support vector regression. Ninety-five participants with Down's syndrome successfully completed a full Pittsburgh Compound B (PiB) PET-MR protocol and memory assessment at two timepoints. Our findings indicate that graph theory metrics of node degree and strength based on the structural connectome are effective predictors of global amyloid deposition. We also show that connection density of the structural network at baseline is a promising predictor of current cognitive performance. Directionality of effects were mainly significant reductions in the white matter connectivity in relation to both PiB+ status and greater rate of cognitive decline. Taken together, these results demonstrate the integral role of the white matter during neuropathological progression and the utility of machine learning methodology for non-invasively evaluating Alzheimer's disease prognosis.


Subject(s)
Alzheimer Disease , Amyloidosis , Down Syndrome , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloidogenic Proteins , Amyloidosis/pathology , Brain/metabolism , Cognition , Down Syndrome/psychology , Humans , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/pathology , Support Vector Machine
13.
Disabil Health J ; 15(3): 101278, 2022 07.
Article in English | MEDLINE | ID: mdl-35256308

ABSTRACT

BACKGROUND: The Down syndrome population has been disproportionately affected by Coronavirus 2019 (COVID-19) in terms of experiencing severe illness and death. Societal efforts to curb the spread of COVID-19 may also have taken a heavy toll on the daily lives of individuals with Down syndrome. OBJECTIVE/HYPOTHESIS: The goal of the study was to understand how the COVID-19 pandemic has altered daily life (including residence, employment, and participation in adult disability day programs) and influenced the mood and behavior of adults with Down syndrome. METHODS: Between September 2020 and February 2021, caregivers of 171 adults with Down syndrome (aged 22-66 years) located across the United States and in the United Kingdom enrolled in the Alzheimer's Biomarker Research Consortium on Down Syndrome (ABC-DS) completed a survey. RESULTS: The residence of 17% of individuals was altered, and 89% of those who had been employed stopped working during the pandemic. One-third (33%) of individuals were reported to be more irritable or easily angered, 52% were reported to be more anxious, and 41% were reported to be more sad/depressed/unhappy relative to prepandemic. The majority of changes in mood and behavior were of modest severity. CONCLUSIONS: The COVID-19 pandemic has had widespread effects on the daily life and mood and behavior of adults with Down syndrome. In the short term, caregivers and providers should be prepared to help adults with Down syndrome with changes in daily routines, residence, employment, or adult disability day programs as society shifts away from COVID-19 safety protocols.


Subject(s)
COVID-19 , Disabled Persons , Down Syndrome , Adult , Affect , Down Syndrome/complications , Humans , Pandemics , United States/epidemiology
14.
Neurobiol Aging ; 107: 118-127, 2021 11.
Article in English | MEDLINE | ID: mdl-34428720

ABSTRACT

Adults with Down syndrome (DS) are at risk for Alzheimer's disease. Despite sharing trisomy 21, however, there is variability in the age of disease onset. This variability may mean that other factors, such as lifestyle, influence cognitive aging and disease timing. The present study assessed the association between everyday life physical activity using an actigraph accelerometer and cognitive functioning and early Alzheimer's disease pathology via positron emission tomography amyloid-ß and tau and diffusion tension imaging measures of white matter integrity in 61 non-demented adults with DS. Percent time in sedentary behavior and in moderate-to-vigorous activity were associated (negatively and positively, respectively) with cognitive functioning (r = -.472 to .572, p < 0.05). Neither sedentary behavior nor moderate-to-vigorous activity were associated with amyloid-ß or tau, but both were associated with white matter integrity in the superior and inferior longitudinal fasciculus (Fractional Anisotropy: r = -.397 to -.419, p < 0.05; Mean Diffusivity: r = .400, p < 0.05). Longitudinal studies are needed to determine if physical activity promotes healthy aging in DS.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/etiology , Alzheimer Disease/psychology , Cognition , Down Syndrome/complications , Down Syndrome/psychology , Exercise/physiology , Adult , Age of Onset , Amyloid beta-Peptides/metabolism , Diffusion Tensor Imaging , Female , Humans , Male , Middle Aged , Neuroimaging , Positron-Emission Tomography , Risk , Sedentary Behavior , White Matter/diagnostic imaging , White Matter/metabolism , White Matter/pathology , tau Proteins/metabolism
15.
Neuroimage ; 233: 117956, 2021 06.
Article in English | MEDLINE | ID: mdl-33716158

ABSTRACT

Changes of cardiac-induced regional pulsatility can be associated with specific regions of brain volumetric changes, and these are related with cognitive alterations. Thus, mapping of cardiac pulsatility over the entire brain can be helpful to assess these relationships. A total of 108 subjects (age: 66.5 ± 8.4 years, 68 females, 52 healthy controls, 11 subjective cognitive decline, 17 impaired without complaints, 19 MCI and 9 AD) participated. The pulsatility map was obtained directly from resting-state functional MRI time-series data at 3T. Regional brain volumes were segmented from anatomical MRI. Multidomain neuropsychological battery was performed to test memory, language, attention and visuospatial construction. The Montreal Cognitive Assessment (MoCA) was also administered. The sparse partial least square (SPLS) method, which is desirable for better interpreting high-dimensional variables, was applied for the relationship between the entire brain voxels of pulsatility and 45 segmented brain volumes. A multiple holdout SPLS framework was used to optimize sparsity for assessing the pulsatility-volume relationship model and to test the reliability by fitting the models to 9 different splits of the data. We found statistically significant associations between subsets of pulsatility voxels and subsets of segmented brain volumes by rejecting the omnibus null hypothesis (any of 9 splits has p < 0.0056 (=0.05/9) with the Bonferroni correction). The pulsatility was positively associated with the lateral ventricle, choroid plexus, inferior lateral ventricle, and 3rd ventricle and negatively associated with hippocampus, ventral DC, and thalamus volumes for the first pulsatility-volume relationship. The pulsatility had an additional negative relationship with the amygdala and brain stem volumes for the second pulsatility-volume relationship. The spatial distribution of correlated pulsatility was observed in major feeding arteries to the brain regions, ventricles, and sagittal sinus. The indirect mediating pathways through the volumetric changes were statistically significant between the pulsatility and multiple cognitive measures (p < 0.01). Thus, the cerebral pulsatility, along with volumetric measurements, could be a potential marker for better understanding of pathophysiology and monitoring disease progression in age-related neurodegenerative disorders.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Cognition/physiology , Cognitive Dysfunction/diagnostic imaging , Heart Rate/physiology , Pulsatile Flow/physiology , Aged , Aged, 80 and over , Cerebral Ventricles/diagnostic imaging , Cerebral Ventricles/physiology , Cognitive Dysfunction/physiopathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Organ Size
16.
Front Aging Neurosci ; 13: 760663, 2021.
Article in English | MEDLINE | ID: mdl-35185514

ABSTRACT

White matter hyperintensities (WMHs) are associated with cognitive decline. Assessing the effect of WMH on WM microstructural changes and its relationships with structural and functional connectivity to multiple cognitive domains are helpful to better understand the pathophysiological processes of cognitive impairment. 65 participants (49 normal and 16 MCI subjects, age: 67.4 ± 8.3 years, 44 females) were studied at 3T. The WMHs and fifty fiber tracts were automatically segmented from the T1/T2-weighted images and diffusion-weighted images, respectively. Tract-profiles of WMH were compared with those of apparent fiber density (AFD). The relationship between AFD and tract connectivity (TC) was assessed. Functional connectivity (FC) between tract ends obtained from resting-state functional MRI was examined in relation to TC. Tract-specific relationships of WMH, TC and FC with a multi-domain neuropsychological test battery and Montreal Cognitive Assessment (MoCA) were also separately assessed by lasso linear regression. Indirect pathways of TC and FC between WMH and multiple cognitive measures were tested using the mediation analysis. Higher WMH loads in WM tracts were locally matched with the reduced AFD, which was related to decrease in TC. However, no direct relationship was found between TC and FC. Tract-specific changes on WMH, TC and FC for each cognitive performance may explain that macro- and microstructural and functional changes are associated differently with each cognitive domain in a fiber specific manner. In these identified tracts, the differences between normal and MCI for WMH and TC were increased, and the relationships of WMH, TC and FC with cognitive outcomes were more significant, compared to the results from all tracts. Indirect pathways of two-step (TC-FC) between WMH and all cognitive domains were significant (p < 0.0083 with Bonferroni correction), while the separated indirect pathways through TC and through FC were different depending on cognitive domain. Deterioration in specific cognitive domains may be affected by alterations in a set of different tracts that are differently associated with macrostructural, microstructural, and function changes. Thus, assessments of WMH and its associated changes on specific tracts help for better understanding of the interrelationships of multiple changes in cognitive impairment.

17.
Alzheimers Dement (Amst) ; 12(1): e12096, 2020.
Article in English | MEDLINE | ID: mdl-32995465

ABSTRACT

INTRODUCTION: There is a critical need to identify measures of cognitive functioning sensitive to early Alzheimer's disease (AD) pathophysiology in Down syndrome to advance clinical trial research in this at-risk population. The objective of the study was to longitudinally track performance on cognitive measures in relation to neocortical and striatal amyloid beta (Aß) in non-demented Down syndrome. METHODS: The study included 118 non-demented adults with Down syndrome who participated in two to five points of data collection, spanning 1.5 to 8 years. Episodic memory, visual attention and executive functioning, and motor planning and coordination were assessed. Aß was measured via [C-11] Pittsburgh Compound-B (PiB) PET. RESULTS: PiB was associated with level and rate of decline in cognitive performance in episodic memory, visual attention, executive functioning, and visuospatial ability in models controlling for chronological age. DISCUSSION: The Cued Recall Test emerged as a promising indicator of transition from preclinical to prodromal AD.

18.
Alzheimers Dement (Amst) ; 12(1): e12065, 2020.
Article in English | MEDLINE | ID: mdl-32775597

ABSTRACT

INTRODUCTION: Adults with Down syndrome (DS) are at exceptionally high risk for Alzheimer's disease (AD), with virtually all individuals developing key neuropathological features by age 40. Identifying biomarkers of AD progression in DS can provide valuable insights into pathogenesis and suggest targets for disease modifying treatments. METHODS: We describe the development of a multi-center, longitudinal study of biomarkers of AD in DS. The protocol includes longitudinal examination of clinical, cognitive, blood and cerebrospinal fluid-based biomarkers, magnetic resonance imaging and positron emission tomography measures (at 16-month intervals), as well as genetic modifiers of AD risk and progression. RESULTS: Approximately 400 individuals will be enrolled in the study (more than 370 to date). The methodological approach from the administrative, clinical, neuroimaging, omics, neuropathology, and statistical cores is provided. DISCUSSION: This represents the largest U.S.-based, multi-site, biomarker initiative of AD in DS. Findings can inform other multidisciplinary networks studying AD in the general population.

19.
J Gerontol A Biol Sci Med Sci ; 74(11): 1753-1760, 2019 10 04.
Article in English | MEDLINE | ID: mdl-30957843

ABSTRACT

BACKGROUND: We estimated the prevalence and incidence of amyloid-ß deposition (A), small-vessel disease (V), and neurodegeneration (N) biomarker positivity in community-dwelling cognitively normal individuals (CN). We determined the longitudinal association between the respective biomarker indices with progression to all-cause mild cognitive impairment (MCI) and its amnestic and nonamnestic subtypes. METHODS: CN participants, recruited by advertising, underwent brain [C-11]Pittsburgh Compound-B (PiB)-positron emission tomography (PET), magnetic resonance imaging, and [F-18]fluoro-2-deoxy-glucose (FDG)-PET, and were designated as having high or low amyloid-ß (A+/A-), greater or lower white matter hyperintensities burden (V+/V-) and diminished or normal cortical glucose metabolism (N+/N-). MCI was adjudicated using clinical assessments. We examined the association between A, V, and N biomarker positivity at study baseline and endpoint, with progression to MCI using linear regression, Cox proportional hazards and Kaplan-Meier analyses adjusted for age and APOE-ε4 carrier status. RESULTS: In 98 CN individuals (average age 74 years, 65% female), A+, V+, and N+ prevalence was 26%, 33%, and 8%, respectively. At study endpoint (median: 5.5 years), an A+, but not a V+ or N+ scan, was associated with higher odds of all-cause MCI (Chi-square = 3.9, p = .048, odds ratio, 95% confidence interval = 2.6 [1.01-6.8]). Baseline A+, V+, or N+ were not associated with all-cause MCI, however, baseline A+ (p = .018) and A+N+ (p = .049), and endpoint A+N+ (p = .025) were associated with time to progression to amnestic, not nonamnestic, MCI. CONCLUSION: Longitudinal assessments clarify the association between amyloid-ß and progression to all-cause MCI in CN individuals. The association between biomarker positivity indices of amyloid-ß and neurodegeneration, and amnestic MCI reflects the underlying pathology involved in the progression to prodromal Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/metabolism , Capillaries/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Vascular Diseases/physiopathology , Age Factors , Aged , Aged, 80 and over , Biomarkers/metabolism , Capillaries/diagnostic imaging , Cohort Studies , Disease Progression , Female , Follow-Up Studies , Healthy Aging/physiology , Humans , Independent Living , Kaplan-Meier Estimate , Linear Models , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Neuropsychological Tests , Positron-Emission Tomography/methods , Proportional Hazards Models , Risk Assessment , Vascular Diseases/diagnostic imaging
20.
Dev Neurobiol ; 79(7): 738-749, 2019 07.
Article in English | MEDLINE | ID: mdl-30912871

ABSTRACT

The present study provided an investigation of associations between leisure activity and early Alzheimer's disease neuropathology (i.e., brain ß-amyloid) and episodic memory in a sample of 65 adults with Down syndrome (aged 30-53 years), at baseline and follow-up, approximately three years apart. Findings indicated that leisure activity at baseline was not associated with brain ß-amyloid at baseline or change in brain ß-amyloid from baseline to follow-up. Greater cognitively stimulating leisure activity at baseline was associated with better episodic memory at baseline, and greater social leisure activity at baseline was associated with less decline in episodic memory from baseline to follow-up. High (as opposed to low) levels of social and overall leisure activity at baseline moderated the association between increase in brain ß-amyloid and decline in episodic memory, from baseline to follow-up. Findings suggest that cognitively stimulating and social leisure activity could protect against the effect of Alzheimer's disease neuropathology on episodic memory in adults with Down syndrome.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Down Syndrome/metabolism , Leisure Activities , Memory, Episodic , Adult , Brain/diagnostic imaging , Down Syndrome/diagnostic imaging , Down Syndrome/psychology , Female , Follow-Up Studies , Humans , Leisure Activities/psychology , Longitudinal Studies , Male , Middle Aged , Positron-Emission Tomography/methods , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...