Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Entomol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748568

ABSTRACT

Domestication can lead to significant changes in the growth and behavior of organisms. While the threat of predation is a strong selective force in the wild, the relaxation or removal of this threat in captive-rearing environments selects for reduced sensitivity to biotic stressors. Previous work has documented such changes in other taxa, but no work has been done on domestication-related losses of predation risk sensitivity in insects. We exposed both wild and domesticated (>50 generations in captivity) Lymantria dispar dispar (Lepidoptera: Erebidae) larvae to recordings of predators (wasp buzzing), nonpredators (mosquito buzzing), or no sound to compare the effects of predation risk on the two stocks. Wasp buzzing, but not mosquito buzzing, decreased survival of wild caterpillars relative to the control; domesticated caterpillars showed no such response. Domesticated L. dispar larvae appear to have reduced sensitivity to predation risk cues, suggesting that captive-reared insects may not always be analogs to their wild counterparts for risk-related behavioral studies.

2.
Ecology ; 104(4): e4007, 2023 04.
Article in English | MEDLINE | ID: mdl-36807135

ABSTRACT

The high fitness cost of predation selects prey capable of detecting risk cues and responding in ways that reduce their vulnerability. While the impacts of auditory predator cues have been extensively researched in vertebrate prey, much less is known about invertebrate species' responses and their potential to affect the wider food web. We exposed larvae of Spodoptera exigua, a slow-moving and vulnerable herbivore hunted by aerial predators, to recordings of wasp buzzing (risk cue), mosquito buzzing (no-risk cue), or a no-sound control in both laboratory and field settings. In the laboratory, wasp buzzing (but not mosquito buzzing) reduced survival relative to the control; there was, however, no effect on time to or weight at pupation in survivors. In the field, wasp buzzing reduced caterpillar herbivory and increased plant biomass relative to the control treatment. In contrast, mosquito buzzing reduced herbivory less than wasp buzzing and had no effect on plant biomass. The fact that wasp cues evoked strong responses in both experiments, while mosquito buzzing generally did not, indicates that caterpillars were responding to predation risk rather than sound per se. Such auditory cues may have an important but largely unappreciated impacts on terrestrial invertebrate herbivores and their host plants.


Subject(s)
Lepidoptera , Wasps , Animals , Herbivory , Cues , Plants , Larva/physiology , Predatory Behavior , Food Chain
SELECTION OF CITATIONS
SEARCH DETAIL
...