Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Endocrinol ; 575: 111995, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37364632

ABSTRACT

Female fertility is highly dependent on energy balance. High fat diet (HFD) intake entails a risk of infertility and ovulatory disorders. Considering the increase in the prevalence of overweight and obesity over the last decades, it is crucial to understand the mechanisms involved in overweight-associated infertility. In this study, we evaluated the reproductive performance of female mice fed with a HFD and the effects of metformin administration on ovarian function in these mice. We hypothesized that one of the mechanisms involved in subfertility due to a HFD intake is the alteration of ovarian blood vessel formation. We found that mice fed with HFD had altered estrous cycles and steroidogenesis, increased ovarian fibrosis, fewer pups per litter and require more time to achieve pregnancy. HFD-fed mice also presented dysregulated ovarian angiogenesis and an increase in nuclear DNA damage in ovarian cells. Ovulation rates were lower in these animals, as evidenced both in natural mating and after ovulation induction with gonadotropins. Metformin ameliorated ovarian angiogenesis, improved steroidogenesis, fibrosis, and ovulation, decreased the time to pregnancy and increased litter sizes in HFD-fed mice. We conclude that ovarian angiogenesis is one of the mechanisms detrimentally affected by HFD intake. Since metformin could improve ovarian microvasculature, it may be an interesting strategy to study in women to shed light on new targets for patients with metabolic disturbances.


Subject(s)
Infertility , Metformin , Pregnancy , Animals , Female , Mice , Diet, High-Fat/adverse effects , Overweight , Metformin/pharmacology , Fertility , Mice, Inbred C57BL
2.
Front Cell Dev Biol ; 9: 767161, 2021.
Article in English | MEDLINE | ID: mdl-34765607

ABSTRACT

To become fully competent to fertilize an egg, mammalian sperm undergo a series of functional changes within the female tract, known as capacitation, that require an adequate supply and management of energy. However, the contribution of each ATP generating pathway to sustain the capacitation-associated changes remains unclear. Based on this, we investigated the role of mitochondrial activity in the acquisition of sperm fertilizing ability during capacitation in mice. For this purpose, the dynamics of the mitochondrial membrane potential (MMP) was studied by flow cytometry with the probe tetramethylrhodamine ethyl ester (TMRE). We observed a time-dependent increase in MMP only in capacitated sperm as well as a specific staining with the probe in the flagellar region where mitochondria are confined. The MMP rise was prevented when sperm were exposed to the mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazine (CCCP) or the protein kinase A (PKA) inhibitor H89 during capacitation, indicating that MMP increase is dependent on capacitation and H89-sensitive events. Results showed that whereas nearly all motile sperm were TMRE positive, immotile cells were mostly TMRE negative, supporting an association between high MMP and sperm motility. Furthermore, CCCP treatment during capacitation did not affect PKA substrate and tyrosine phosphorylations but produced a decrease in hyperactivation measured by computer assisted sperm analysis (CASA), similar to that observed after H89 exposure. In addition, CCCP inhibited the in vitro sperm fertilizing ability without affecting cumulus penetration and gamete fusion, indicating that the hyperactivation supported by mitochondrial function is needed mainly for zona pellucida penetration. Finally, complementary in vivo fertilization experiments further demonstrated the fundamental role of mitochondrial activity for sperm function. Altogether, our results show the physiological relevance of mitochondrial functionality for sperm fertilization competence.

3.
Rev Endocr Metab Disord ; 22(4): 1057-1071, 2021 12.
Article in English | MEDLINE | ID: mdl-34037916

ABSTRACT

Infertility is a global health problem affecting 10-15% of couples in reproductive age. Recent studies have provided growing evidence supporting that lifestyle factors can affect male fertility through alterations in endocrine profiles, spermatogenesis and/or sperm function. One of these critical factors could be the change in the food intake behavior in modern societies that produces metabolic alterations. Regarding this, metabolic syndrome (MetS) prevalence has increased in epidemic in the last 40-50 years. Although MetS is associated with advanced age, changes in lifestyles have accelerated the appearance of symptoms in the reproductive age. We review herein the current understanding of the relationship between MetS and the male reproductive status. For this purpose, in this narrative review a comprehensive literature search was made in both animal models and men, allowing us to evaluate such relationship. This analysis showed a high variability in the reproductive phenotypes observed in patients and mice suffering MetS, including sperm parameters, fertility and offspring health. In view of this, we proposed that the reproductive effects, which are diverse and not robust, observed among MetS-affected males, might depend on additional factors not associated with the metabolic condition and contributed not only by the affected male but also by his partner. With this perspective, this review provides a more accurate insight of this syndrome critical for the identification of specific diagnostic indicators and treatment of MetS-induced fertility disorders.


Subject(s)
Infertility, Male , Metabolic Syndrome , Animals , Fertility , Humans , Infertility, Male/etiology , Male , Metabolic Syndrome/etiology , Mice , Spermatogenesis , Spermatozoa
SELECTION OF CITATIONS
SEARCH DETAIL
...