Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Mol Cancer ; 23(1): 54, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486218

ABSTRACT

BACKGROUND: Phosphoinositide 3-kinases (PI3Ks) are critical regulators of diverse cellular functions and have emerged as promising targets in cancer therapy. Despite significant progress, existing PI3K inhibitors encounter various challenges such as suboptimal bioavailability, potential off-target effects, restricted therapeutic indices, and cancer-acquired resistance. Hence, novel inhibitors that overcome some of these challenges are needed. Here, we describe the characterization of KTC1101, a novel pan-PI3K inhibitor that simultaneously targets tumor cell proliferation and the tumor microenvironment. Our studies demonstrate that KTC1101 significantly increases the anti-PD-1 efficacy in multiple pre-clinical mouse models. METHODS: KTC1101 was synthesized and characterized employing chemical synthesis, molecular modeling, Nuclear Magnetic Resonance (NMR), and mass spectrometry. Its target specificity was confirmed through the kinase assay, JFCR39 COMPARE analysis, and RNA-Seq analysis. Metabolic stability was verified via liver microsome and plasma assays, pharmacokinetics determined by LC-MS/MS, and safety profile established through acute toxicity assays to determine the LD50. The antiproliferative effects of KTC1101 were evaluated in a panel of cancer cell lines and further validated in diverse BALB/c nude mouse xenograft, NSG mouse xenograft and syngeneic mouse models. The KTC1101 treatment effect on the immune response was assessed through comprehensive RNA-Seq, flow cytometry, and immunohistochemistry, with molecular pathways investigated via Western blot, ELISA, and qRT-PCR. RESULTS: KTC1101 demonstrated strong inhibition of cancer cell growth in vitro and significantly impeded tumor progression in vivo. It effectively modulated the Tumor Microenvironment (TME), characterized by increased infiltration of CD8+ T cells and innate immune cells. An intermittent dosing regimen of KTC1101 enhanced these effects. Notably, KTC1101 synergized with anti-PD-1 therapy, significantly boosting antitumor immunity and extending survival in preclinical models. CONCLUSION: KTC1101's dual mechanism of action-directly inhibiting tumor cell growth and dynamically enhancing the immune response- represents a significant advancement in cancer treatment strategies. These findings support incorporating KTC1101 into future oncologic regimens to improve the efficacy of immunotherapy combinations.


Subject(s)
CD8-Positive T-Lymphocytes , Phosphatidylinositol 3-Kinases , Humans , Animals , Mice , Chromatography, Liquid , Tandem Mass Spectrometry , Immunotherapy
2.
Nature ; 624(7991): 343-354, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38092912

ABSTRACT

In mammalian brains, millions to billions of cells form complex interaction networks to enable a wide range of functions. The enormous diversity and intricate organization of cells have impeded our understanding of the molecular and cellular basis of brain function. Recent advances in spatially resolved single-cell transcriptomics have enabled systematic mapping of the spatial organization of molecularly defined cell types in complex tissues1-3, including several brain regions (for example, refs. 1-11). However, a comprehensive cell atlas of the whole brain is still missing. Here we imaged a panel of more than 1,100 genes in approximately 10 million cells across the entire adult mouse brains using multiplexed error-robust fluorescence in situ hybridization12 and performed spatially resolved, single-cell expression profiling at the whole-transcriptome scale by integrating multiplexed error-robust fluorescence in situ hybridization and single-cell RNA sequencing data. Using this approach, we generated a comprehensive cell atlas of more than 5,000 transcriptionally distinct cell clusters, belonging to more than 300 major cell types, in the whole mouse brain with high molecular and spatial resolution. Registration of this atlas to the mouse brain common coordinate framework allowed systematic quantifications of the cell-type composition and organization in individual brain regions. We further identified spatial modules characterized by distinct cell-type compositions and spatial gradients featuring gradual changes of cells. Finally, this high-resolution spatial map of cells, each with a transcriptome-wide expression profile, allowed us to infer cell-type-specific interactions between hundreds of cell-type pairs and predict molecular (ligand-receptor) basis and functional implications of these cell-cell interactions. These results provide rich insights into the molecular and cellular architecture of the brain and a foundation for functional investigations of neural circuits and their dysfunction in health and disease.


Subject(s)
Brain , Single-Cell Gene Expression Analysis , Animals , Mice , Brain/cytology , Cell Communication , Gene Expression Profiling , In Situ Hybridization, Fluorescence/methods , Ligands , Neural Pathways , Transcriptome
3.
Cancer Discov ; 13(12): 2532-2547, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37698949

ABSTRACT

Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, and monitoring treatment response. Although proteins can be useful blood-based biomarkers, many have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in carcinomas and high-risk precursors during carcinogenesis with negligible expression in normal tissues, suggesting ORF1p could be a highly specific cancer biomarker. To explore ORF1p as a blood-based biomarker, we engineered ultrasensitive digital immunoassays that detect mid-attomolar (10-17 mol/L) ORF1p concentrations in plasma across multiple cancers with high specificity. Plasma ORF1p shows promise for early detection of ovarian cancer, improves diagnostic performance in a multianalyte panel, provides early therapeutic response monitoring in gastroesophageal cancers, and is prognostic for overall survival in gastroesophageal and colorectal cancers. Together, these observations nominate ORF1p as a multicancer biomarker with potential utility for disease detection and monitoring. SIGNIFICANCE: The LINE-1 ORF1p transposon protein is pervasively expressed in many cancers and is a highly specific biomarker of multiple common, lethal carcinomas and their high-risk precursors in tissue and blood. Ultrasensitive ORF1p assays from as little as 25 µL plasma are novel, rapid, cost-effective tools in cancer detection and monitoring. See related commentary by Doucet and Cristofari, p. 2502. This article is featured in Selected Articles from This Issue, p. 2489.


Subject(s)
Carcinoma , Ovarian Neoplasms , Female , Humans , Long Interspersed Nucleotide Elements , Proteins/genetics , Biomarkers, Tumor , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics
4.
bioRxiv ; 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36945367

ABSTRACT

In mammalian brains, tens of millions to billions of cells form complex interaction networks to enable a wide range of functions. The enormous diversity and intricate organization of cells in the brain have so far hindered our understanding of the molecular and cellular basis of its functions. Recent advances in spatially resolved single-cell transcriptomics have allowed systematic mapping of the spatial organization of molecularly defined cell types in complex tissues1-3. However, these approaches have only been applied to a few brain regions1-11 and a comprehensive cell atlas of the whole brain is still missing. Here, we imaged a panel of >1,100 genes in ~8 million cells across the entire adult mouse brain using multiplexed error-robust fluorescence in situ hybridization (MERFISH)12 and performed spatially resolved, single-cell expression profiling at the whole-transcriptome scale by integrating MERFISH and single-cell RNA-sequencing (scRNA-seq) data. Using this approach, we generated a comprehensive cell atlas of >5,000 transcriptionally distinct cell clusters, belonging to ~300 major cell types, in the whole mouse brain with high molecular and spatial resolution. Registration of the MERFISH images to the common coordinate framework (CCF) of the mouse brain further allowed systematic quantifications of the cell composition and organization in individual brain regions defined in the CCF. We further identified spatial modules characterized by distinct cell-type compositions and spatial gradients featuring gradual changes in the gene-expression profiles of cells. Finally, this high-resolution spatial map of cells, with a transcriptome-wide expression profile associated with each cell, allowed us to infer cell-type-specific interactions between several hundred pairs of molecularly defined cell types and predict potential molecular (ligand-receptor) basis and functional implications of these cell-cell interactions. These results provide rich insights into the molecular and cellular architecture of the brain and a valuable resource for future functional investigations of neural circuits and their dysfunction in diseases.

5.
bioRxiv ; 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36747644

ABSTRACT

Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, and monitoring treatment response. While proteins can be useful blood-based biomarkers, many have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-1, L1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in carcinomas and high-risk precursors during carcinogenesis with negligible detectable expression in corresponding normal tissues, suggesting ORF1p could be a highly specific cancer biomarker. To explore the potential of ORF1p as a blood-based biomarker, we engineered ultrasensitive digital immunoassays that detect mid-attomolar (10-17 M) ORF1p concentrations in patient plasma samples across multiple cancers with high specificity. Plasma ORF1p shows promise for early detection of ovarian cancer, improves diagnostic performance in a multi-analyte panel, and provides early therapeutic response monitoring in gastric and esophageal cancers. Together, these observations nominate ORF1p as a multi-cancer biomarker with potential utility for disease detection and monitoring.

6.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35292516

ABSTRACT

BACKGROUND: Although the mitogen-activated protein kinases (MAPK) pathway is hyperactive in head and neck cancer (HNC), inhibition of MEK1/2 in HNC patients has not shown clinically meaningful activity. Therefore, we aimed to characterize the effect of MEK1/2 inhibition on the tumor microenvironment (TME) of MAPK-driven HNC, elucidate tumor-host interaction mechanisms facilitating immune escape on treatment, and apply rationale-based therapy combination immunotherapy and MEK1/2 inhibitor to induce tumor clearance. METHODS: Mouse syngeneic tumors and xenografts experiments were used to analyze tumor growth in vivo. Single-cell cytometry by time of flight, flow cytometry, and tissue stainings were used to profile the TME in response to trametinib (MEK1/2 inhibitor). Co-culture of myeloid-derived suppressor cells (MDSC) with CD8+ T cells was used to measure immune suppression. Overexpression of colony-stimulating factor-1 (CSF-1) in tumor cells was used to show the effect of tumor-derived CSF-1 on sensitivity to trametinib and anti-programmed death- 1 (αPD-1) in mice. In HNC patients, the ratio between CSF-1 and CD8A was measured to test the association with clinical benefit to αPD-1 and αPD-L1 treatment. RESULTS: Using preclinical HNC models, we demonstrated that treatment with trametinib delays HNC initiation and progression by reducing tumor cell proliferation and enhancing the antitumor immunity of CD8+ T cells. Activation of CD8+ T cells by supplementation with αPD-1 antibody eliminated tumors and induced an immune memory in the cured mice. Mechanistically, an early response to trametinib treatment sensitized tumors to αPD-1-supplementation by attenuating the expression of tumor-derived CSF-1, which reduced the abundance of two CSF-1R+CD11c+ MDSC populations in the TME. In contrast, prolonged treatment with trametinib abolished the antitumor activity of αPD-1, because tumor cells undergoing the epithelial to mesenchymal transition in response to trametinib restored CSF-1 expression and recreated an immune-suppressive TME. CONCLUSION: Our findings provide the rationale for testing the trametinib/αPD-1 combination in HNC and highlight the importance of sensitizing tumors to αPD-1 by using MEK1/2 to interfere with the tumor-host interaction. Moreover, we describe the concept that treatment of cancer with a targeted therapy transiently induces an immune-active microenvironment, and supplementation of immunotherapy during this time further activates the antitumor machinery to cause tumor elimination.


Subject(s)
Head and Neck Neoplasms , Tumor Microenvironment , Animals , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Head and Neck Neoplasms/drug therapy , Humans , Immunotherapy , Mice
7.
Cancer Discov ; 12(6): 1462-1481, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35320348

ABSTRACT

Altered RNA expression of repetitive sequences and retrotransposition are frequently seen in colorectal cancer, implicating a functional importance of repeat activity in cancer progression. We show the nucleoside reverse transcriptase inhibitor 3TC targets activities of these repeat elements in colorectal cancer preclinical models with a preferential effect in p53-mutant cell lines linked with direct binding of p53 to repeat elements. We translate these findings to a human phase II trial of single-agent 3TC treatment in metastatic colorectal cancer with demonstration of clinical benefit in 9 of 32 patients. Analysis of 3TC effects on colorectal cancer tumorspheres demonstrates accumulation of immunogenic RNA:DNA hybrids linked with induction of interferon response genes and DNA damage response. Epigenetic and DNA-damaging agents induce repeat RNAs and have enhanced cytotoxicity with 3TC. These findings identify a vulnerability in colorectal cancer by targeting the viral mimicry of repeat elements. SIGNIFICANCE: Colorectal cancers express abundant repeat elements that have a viral-like life cycle that can be therapeutically targeted with nucleoside reverse transcriptase inhibitors (NRTI) commonly used for viral diseases. NRTIs induce DNA damage and interferon response that provide a new anticancer therapeutic strategy. This article is highlighted in the In This Issue feature, p. 1397.


Subject(s)
Colorectal Neoplasms , RNA-Directed DNA Polymerase , Animals , Antiviral Agents , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , DNA , Humans , Interferons/metabolism , Lamivudine , Life Cycle Stages , RNA , RNA-Directed DNA Polymerase/metabolism , Tumor Suppressor Protein p53/genetics
8.
Adv Sci (Weinh) ; 9(14): e2103241, 2022 05.
Article in English | MEDLINE | ID: mdl-35289122

ABSTRACT

Lymphoid follicles (LFs) are responsible for generation of adaptive immune responses in secondary lymphoid organs and form ectopically during chronic inflammation. A human model of ectopic LF formation will provide a tool to understand LF development and an alternative to non-human primates for preclinical evaluation of vaccines. Here, it is shown that primary human blood B- and T-lymphocytes autonomously assemble into ectopic LFs when cultured in a 3D extracellular matrix gel within one channel of a two-channel organ-on-a-chip microfluidic device. Superfusion via a parallel channel separated by a microporous membrane is required for LF formation and prevents lymphocyte autoactivation. These germinal center-like LFs contain B cells expressing Activation-Induced Cytidine Deaminase and exhibit plasma cell differentiation upon activation. To explore their utility for seasonal vaccine testing, autologous monocyte-derived dendritic cells are integrated into LF Chips. The human LF chips demonstrate improved antibody responses to split virion influenza vaccination compared to 2D cultures, which are enhanced by a squalene-in-water emulsion adjuvant, and this is accompanied by increases in LF size and number. When inoculated with commercial influenza vaccine, plasma cell formation and production of anti-hemagglutinin IgG are observed, as well as secretion of cytokines similar to vaccinated humans over clinically relevant timescales.


Subject(s)
Influenza Vaccines , Influenza, Human , Tertiary Lymphoid Structures , Animals , Antibodies, Viral , Humans , Influenza, Human/prevention & control , Lab-On-A-Chip Devices , Seasons , Vaccination
9.
Angew Chem Int Ed Engl ; 60(49): 25966-25972, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34534408

ABSTRACT

Coronavirus disease 2019 (COVID-19) manifests with high clinical variability and warrants sensitive and specific assays to analyze immune responses in infected and vaccinated individuals. Using Single Molecule Arrays (Simoa), we developed an assay to assess antibody neutralization with high sensitivity and multiplexing capabilities based on antibody-mediated blockage of the ACE2-spike interaction. The assay does not require live viruses or cells and can be performed in a biosafety level 2 laboratory within two hours. We used this assay to assess neutralization and antibody levels in patients who died of COVID-19 and patients hospitalized for a short period of time and show that neutralization and antibody levels increase over time. We also adapted the assay for SARS-CoV-2 variants and measured neutralization capacity in pre-pandemic healthy, COVID-19 infected, and vaccinated individuals. This assay is highly adaptable for clinical applications, such as vaccine development and epidemiological studies.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , Neutralization Tests/methods , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Antigen-Antibody Reactions , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
10.
Cancers (Basel) ; 13(9)2021 May 07.
Article in English | MEDLINE | ID: mdl-34067117

ABSTRACT

Over 50% of human papilloma positive head-and-neck cancer (HNCHPV+) patients harbor genomic-alterations in PIK3CA, leading to hyperactivation of the phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K) pathway. Nevertheless, despite PI3K pathway activation in HNCHPV+ tumors, the anti-tumor activities of PI3K pathway inhibitors are moderate, mostly due to the emergence of resistance. Thus, for potent and long-term tumor management, drugs blocking resistance mechanisms should be combined with PI3K inhibitors. Here, we delineate the molecular mechanisms of the acquisition of resistance to two isoform-selective inhibitors of PI3K (isiPI3K), alpelisib (BYL719) and taselisib (GDC0032), in HNCHPV+ cell lines. By comparing the transcriptional landscape of isiPI3K-sensitive tumor cells with that of their corresponding isiPI3K-acquired-resistant tumor cells, we found upregulation of insulin growth factor 2 (IGF2) in the resistant cells. Mechanistically, we show that upon isiPI3K treatment, isiPI3K-sensitive tumor cells upregulate the expression of IGF2 to induce cell proliferation via the activation of the IGF1 receptor (IGF1R). Stimulating tumor cells with recombinant IGF2 limited isiPI3K efficacy and released treated cells from S phase arrest. Knocking-down IGF2 with siRNA, or blocking IGF1R with AEW541, resulted in superior anti-tumor activity of isiPI3K in vitro and ex vivo. In vivo, the combination of isiPI3K and IGF1R inhibitor induced stable disease in mice bearing either tumors generated by the HNCHPV+ UM-SCC47 cell line or HPV+ patient-derived xenografts. These findings indicate that IGF2 and the IGF2/IGF1R pathway may constitute new targets for combination therapies to enhance the efficacy of PI3K inhibitors for the treatment of HNCHPV+.

11.
J Immunother Cancer ; 8(2)2020 10.
Article in English | MEDLINE | ID: mdl-33020238

ABSTRACT

BACKGROUND: Blood-based biomarkers of anti-solid tumor immune checkpoint blockade (ICB) response are lacking. We hypothesized that changes in systemic cytokine levels with the initial doses of programmed cell death protein 1 (PD-1) pathway inhibitors would correlate with clinical responses. New ultrasensitive ELISA technology enables quantitation of plasma proteins in sub-picogram-per-milliliter concentrations. METHODS: We measured plasma cytokines by ultrasensitive single-molecule array assays in patients with non-small-cell lung carcinoma before and during treatment with anti-PD-1 therapy. Association with best overall response and progression-free survival (PFS) was assessed by Kruskall-Wallis test and Kaplan-Meier plots with log-rank test, respectively. RESULTS: A decrease in interleukin 6 (IL-6) levels was associated with improved PFS (n=47 patients, median PFS: 11 vs 4 months, HR 0.45 (95% CI 0.23 to 0.89), p=0.04). The extent of change in IL-6 differed between best overall response categories (p=0.01) and correlated with changes in C reactive protein levels. We also explored plasma cytokine levels in relation to immune-related adverse effects and observed some correlation. CONCLUSIONS: This study suggests the presence of a systemic, proteomic reflection of successful ICB outside the tumor microenvironment with plasma decreases in IL-6 and CRP.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Interleukin-6/blood , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Lung Neoplasms/blood , Lung Neoplasms/pathology , Male , Middle Aged , Retrospective Studies
12.
Nat Biomed Eng ; 4(12): 1180-1187, 2020 12.
Article in English | MEDLINE | ID: mdl-32948854

ABSTRACT

Sensitive assays are essential for the accurate identification of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we report a multiplexed assay for the fluorescence-based detection of seroconversion in infected individuals from less than 1 µl of blood, and as early as the day of the first positive nucleic acid test after symptom onset. The assay uses dye-encoded antigen-coated beads to quantify the levels of immunoglobulin G (IgG), IgM and IgA antibodies against four SARS-CoV-2 antigens. A logistic regression model trained using samples collected during the pandemic and samples collected from healthy individuals and patients with respiratory infections before the first outbreak of coronavirus disease 2019 (COVID-19) was 99% accurate in the detection of seroconversion in a blinded validation cohort of samples collected before the pandemic and from patients with COVID-19 five or more days after a positive nasopharyngeal test by PCR with reverse transcription. The high-throughput serological profiling of patients with COVID-19 allows for the interrogation of interactions between antibody isotypes and viral proteins, and should help us to understand the heterogeneity of clinical presentations.


Subject(s)
COVID-19/immunology , Immunoassay/methods , Seroconversion/physiology , Aged , Aged, 80 and over , Antibodies/immunology , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Pandemics/prevention & control , SARS-CoV-2/immunology , Sensitivity and Specificity
13.
medRxiv ; 2020 May 02.
Article in English | MEDLINE | ID: mdl-32511657

ABSTRACT

The COVID-19 pandemic continues to infect millions of people worldwide. In order to curb its spread and reduce morbidity and mortality, it is essential to develop sensitive and quantitative methods that identify infected individuals and enable accurate population-wide screening of both past and present infection. Here we show that Single Molecule Array assays detect seroconversion in COVID-19 patients as soon as one day after symptom onset using less than a microliter of blood. This multiplexed assay format allows us to quantitate IgG, IgM and IgA immunoglobulins against four SARS-CoV-2 targets, thereby interrogating 12 antibody isotype-viral protein interactions to give a high resolution profile of the immune response. Using a cohort of samples collected prior to the outbreak as well as samples collected during the pandemic, we demonstrate a sensitivity of 86% and a specificity of 100% during the first week of infection, and 100% sensitivity and specificity thereafter. This assay should become the gold standard for COVID19 serological profiling and will be a valuable tool for answering important questions about the heterogeneity of clinical presentation seen in the ongoing pandemic.

14.
ACS Nano ; 14(8): 9491-9501, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32589401

ABSTRACT

Many proteins are present at low concentrations in biological samples, and therefore, techniques for ultrasensitive protein detection are necessary. To overcome challenges with sensitivity, the digital enzyme-linked immunosorbent assay (ELISA) was developed, which is 1000× more sensitive than conventional ELISA and allows sub-femtomolar protein detection. However, this sensitivity is still not sufficient to measure many proteins in various biological samples, thereby limiting our ability to detect and discover biomarkers. To overcome this limitation, we developed droplet digital ELISA (ddELISA), a simple approach for detecting low protein levels using digital ELISA and droplet microfluidics. ddELISA achieves maximal sensitivity by improving the sampling efficiency and counting more target molecules. ddELISA can detect proteins in the low attomolar range and is up to 25-fold more sensitive than digital ELISA using Single Molecule Arrays (Simoa), the current gold standard tool for ultrasensitive protein detection. Using ddELISA, we measured the LINE1/ORF1 protein, a potential cancer biomarker that has not been previously measured in serum. Additionally, due to the simplicity of our device design, ddELISA is promising for point-of-care applications. Thus, ddELISA will facilitate the discovery of biomarkers that have never been measured before for various clinical applications.


Subject(s)
Nanotechnology , Proteins , Biomarkers, Tumor , Enzyme-Linked Immunosorbent Assay , Microfluidics
15.
Anal Chim Acta ; 1115: 61-85, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32370870

ABSTRACT

Nucleic acids are important biomarkers for disease detection, monitoring, and treatment. Advances in technologies for nucleic acid analysis have enabled discovery and clinical implementation of nucleic acid biomarkers. However, challenges remain with technologies for nucleic acid analysis, thereby limiting the use of nucleic acid biomarkers in certain contexts. Here, we review single-molecule technologies for nucleic acid analysis that can be used to overcome these challenges. We first discuss the various types of nucleic acid biomarkers important for clinical applications and conventional technologies for nucleic acid analysis. We then discuss technologies for single-molecule in vitro and in situ analysis of nucleic acid biomarkers. Finally, we discuss other ultra-sensitive techniques for nucleic acid biomarker detection.


Subject(s)
DNA/genetics , Oligonucleotide Array Sequence Analysis , RNA/genetics , Biomarkers/analysis , Humans
16.
Cancers (Basel) ; 12(2)2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32028632

ABSTRACT

Most head and neck cancer (HNC) patients are resistant to cetuximab, an antibody against the epidermal growth factor receptor. Such therapy resistance is known to be mediated, in part, by stromal cells surrounding the tumor cells; however, the mechanisms underlying such a resistance phenotype remain unclear. To identify the mechanisms of cetuximab resistance in an unbiased manner, RNA-sequencing (RNA-seq) of HNC patient-derived xenografts (PDXs) was performed. Comparing the gene expression of HNC-PDXs before and after treatment with cetuximab indicated that the transforming growth factor-beta (TGF-beta) signaling pathway was upregulated in the stromal cells of PDXs that progressed on cetuximab treatment (CetuximabProg-PDX). However, in PDXs that were extremely sensitive to cetuximab (CetuximabSen-PDX), the TGF-beta pathway was downregulated in the stromal compartment. Histopathological analysis of PDXs showed that TGF-beta-activation was detected in cancer-associated fibroblasts (CAFs) of CetuximabProg-PDX. These TGF-beta-activated CAFs were sufficient to limit cetuximab efficacy in vitro and in vivo. Moreover, blocking the TGF-beta pathway using the SMAD3 inhibitor, SIS3, enhanced cetuximab efficacy and prevented the progression of CetuximabProg-PDX. Altogether, our findings indicate that TGF-beta-activated CAFs play a role in limiting cetuximab efficacy in HNC.

17.
Methods Mol Biol ; 2055: 399-412, 2020.
Article in English | MEDLINE | ID: mdl-31502162

ABSTRACT

Single-molecule array (Simoa) technology enables ultrasensitive protein detection that is suited to the development of peripheral blood-based assays for assessing immuno-oncology responses. We adapted a panel of Simoa assays to measure systemic cytokine levels from plasma and characterized physiologic variation in healthy individuals and preanalytic variation arising from processing and handling of patient samples. Insights from these preclinical studies led us to a well-defined set of Simoa assay conditions, a specimen processing protocol, and a data processing approach that we describe here. Simoa enables accurate quantitation of soluble immune signaling molecules in an unprecedented femtomolar range, opening up the potential for liquid biopsy-type approaches in immuno-oncology. We are using the method described here to distinguish PD-1 inhibitor nonresponders as early as after one dose after therapy and envision applications in characterizing PD-1 inhibitor resistance and detection of immune-related adverse effects.


Subject(s)
Cytokines/blood , Neoplasms/immunology , Single Molecule Imaging/instrumentation , Biomarkers, Tumor/blood , Humans , Immunotherapy , Neoplasms/blood , Protein Array Analysis/instrumentation
18.
JCI Insight ; 52019 03 12.
Article in English | MEDLINE | ID: mdl-30860495

ABSTRACT

AXL overexpression is a common resistance mechanism to anti-cancer therapies, including the resistance to BYL719 (Alpelisib) - the p110α isoform specific inhibitor of phosphoinositide 3-kinase (PI3K) - in esophagus and head and neck squamous cell carcinoma (ESCC, HNSCC respectively). However, the mechanisms underlying AXL overexpression in resistance to BYL719 remain elusive. Here we demonstrated that the AP-1 transcription factors, c-JUN and c-FOS, regulate AXL overexpression in HNSCC and ESCC. The expression of AXL was correlated with that of c-JUN both in HNSCC patients and in HNSCC and ESCC cell lines. Silencing of c-JUN and c-FOS expression in tumor cells downregulated AXL expression and enhanced the sensitivity of human papilloma virus positive (HPVPos) and negative (HPVNeg) tumor cells to BYL719 in vitro. Blocking of the c-JUN N-terminal kinase (JNK) using SP600125 in combination with BYL719 showed a synergistic anti-proliferative effect in vitro, which was accompanied by AXL downregulation and potent inhibition of the mTOR pathway. In vivo, the BYL719-SP600125 drug combination led to the arrest of tumor growth in cell line-derived and patient-derived xenograft models, and in syngeneic head and neck murine cancer models. Collectively, our data suggests that JNK inhibition in combination with anti-PI3K therapy is a new therapeutic strategy that should be tested in HPVPos and HPVNeg HNSCC and ESCC patients.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , JNK Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Thiazoles/pharmacology , Transcription Factor AP-1/metabolism , Animals , Anthracenes , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation , Drug Synergism , Esophageal Neoplasms , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Proto-Oncogene Proteins/drug effects , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/drug effects , Receptor Protein-Tyrosine Kinases/genetics , Squamous Cell Carcinoma of Head and Neck , TOR Serine-Threonine Kinases/metabolism , Thiazoles/therapeutic use , Tongue/pathology , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
19.
Front Oncol ; 9: 17, 2019.
Article in English | MEDLINE | ID: mdl-30723707

ABSTRACT

Despite of remarkable progress made in the head and neck cancer (HNC) therapy, the survival rate of this metastatic disease remain low. Tailoring the appropriate therapy to patients is a major challenge and highlights the unmet need to have a good preclinical model that will predict clinical response. Hence, we developed an accurate and time efficient drug screening method of tumor ex vivo analysis (TEVA) system, which can predict patient-specific drug responses. In this study, we generated six patient derived xenografts (PDXs) which were utilized for TEVA. Briefly, PDXs were cut into 2 × 2 × 2 mm3 explants and treated with clinically relevant drugs for 24 h. Tumor cell proliferation and death were evaluated by immunohistochemistry and TEVA score was calculated. Ex vivo and in vivo drug efficacy studies were performed on four PDXs and three drugs side-by-side to explore correlation between TEVA and PDX treatment in vivo. Efficacy of drug combinations was also ventured. Optimization of the culture timings dictated 24 h to be the time frame to detect drug responses and drug penetrates 2 × 2 × 2 mm3 explants as signaling pathways were significantly altered. Tumor responses to drugs in TEVA, significantly corresponds with the drug efficacy in mice. Overall, this low cost, robust, relatively simple and efficient 3D tissue-based method, employing material from one PDX, can bypass the necessity of drug validation in immune-incompetent PDX-bearing mice. Our data provides a potential rationale for utilizing TEVA to predict tumor response to targeted and chemo therapies when multiple targets are proposed.

20.
Int J Cancer ; 145(3): 748-762, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30694565

ABSTRACT

An understanding of the mechanisms underlying acquired resistance to cetuximab is urgently needed to improve cetuximab efficacy in patients with head and neck squamous cell carcinoma (HNSCC). Here, we present a clinical observation that MET pathway activation constitutes the mechanism of acquired resistance to cetuximab in a patient with HNSCC. Specifically, RNA sequencing and mass spectrometry analysis of cetuximab-sensitive (CetuxSen ) and cetuximab-resistant (CetuxRes ) tumors indicated MET amplification and overexpression in the CetuxRes tumor compared to the CetuxSen lesion. Stimulation of MET in HNSCC cell lines was sufficient to reactivate the MAPK pathway and to confer resistance to cetuximab in vitro and in vivo. In addition to the direct role of MET in reactivation of the MAPK pathway, MET stimulation abrogates the well-known cetuximab-induced compensatory feedback loop of HER2/HER3 expression. Mechanistically, we showed that the overexpression of HER2 and HER3 following cetuximab treatment is mediated by the ETS homologous transcription factor (EHF), and is suppressed by MET/MAPK pathway activation. Collectively, our findings indicate that evaluation of MET and HER2/HER3 in response to cetuximab in HNSCC patients can provide the rationale of successive line of treatment.


Subject(s)
Cetuximab/pharmacology , Head and Neck Neoplasms/drug therapy , Proto-Oncogene Proteins c-met/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Animals , Cell Line, Tumor , Cetuximab/pharmacokinetics , Drug Resistance, Neoplasm , Enzyme Activation , Gene Expression , Head and Neck Neoplasms/enzymology , Head and Neck Neoplasms/genetics , Humans , Indoles/pharmacology , MAP Kinase Signaling System , Mice , Mice, Inbred NOD , Mice, SCID , Random Allocation , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/biosynthesis , Receptor, ErbB-2/genetics , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/biosynthesis , Receptor, ErbB-3/genetics , Squamous Cell Carcinoma of Head and Neck/enzymology , Squamous Cell Carcinoma of Head and Neck/genetics , Sulfones/pharmacology , Up-Regulation , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...