Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 51(13): 7386-7394, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28578575

ABSTRACT

Mercury (Hg) concentration trends in top predator fish (lake trout and walleye) of the Great Lakes (GL) from 2004 to 2015 were determined by Kendall-Theil robust regression with a cluster-based age normalization method to control for the effect of changes in lake trophic status. When data from the GLs (except Lake Erie) are combined, a significant decreasing trend in the lake trout Hg concentrations was found between 2004 and 2015 with an annual decrease of 4.1% per year, consistent with the decline in regional atmospheric Hg emissions and water Hg concentrations. However, a breakpoint was detected with a significant decreasing slope (-8.1% per year) before the breakpoint (2010), and no trend after the breakpoint. When the lakes are examined individually, Lakes Superior and Huron, which are dominated by atmospheric Hg inputs and are more likely than the lower lakes to respond to declining emissions from areas surrounding the GL, have significant decreasing trends with rates between 5.2 and 7.8% per year from 2004 to 2015. These declining trends appear to be driven by decreasing regional atmospheric Hg emissions although they may be partly counterbalanced by other factors, including increasing local emissions, food web changes, eutrophication, and responses to global climate change. Lakes Michigan, Erie and Ontario may have been more impacted by these other factors and their trends changed from decreasing to non-decreasing or increasing in recent years.


Subject(s)
Fishes , Food Chain , Mercury , Water Pollutants, Chemical , Animals , Climate Change , Environmental Monitoring , Great Lakes Region , Lakes , Michigan , Ontario
2.
J Geophys Res Atmos ; 122(8): 4639-4653, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28603681

ABSTRACT

Natural gas production in the U.S. has increased rapidly over the past decade, along with concerns about methane (CH4) leakage (total fugitive emissions), and climate impacts. Quantification of CH4 emissions from oil and natural gas (O&NG) operations is important for establishing scientifically sound, cost-effective policies for mitigating greenhouse gases. We use aircraft measurements and a mass balance approach for three flight experiments in August and September 2015 to estimate CH4 emissions from O&NG operations in the southwestern Marcellus Shale region. We estimate the mean ± 1σ CH4 emission rate as 36.7 ± 1.9 kg CH4 s-1 (or 1.16 ± 0.06 Tg CH4 yr-1) with 59% coming from O&NG operations. We estimate the mean ± 1σ CH4 leak rate from O&NG operations as 3.9 ± 0.4% with a lower limit of 1.5% and an upper limit of 6.3%. This leak rate is broadly consistent with the results from several recent top-down studies but higher than the results from a few other observational studies as well as in the U.S. Environmental Protection Agency CH4 emission inventory. However, a substantial source of CH4 was found to contain little ethane (C2H6), possibly due to coalbed CH4 emitted either directly from coalmines or from wells drilled through coalbed layers. Although recent regulations requiring capture of gas from the completion venting step of the hydraulic fracturing appear to have reduced losses, our study suggests that for a 20 year time scale, energy derived from the combustion of natural gas extracted from this region will require further controls before it can exert a net climate benefit compared to coal.

3.
Nat Commun ; 7: 10267, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758808

ABSTRACT

Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.

4.
Environ Pollut ; 156(2): 526-35, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18299164

ABSTRACT

Changes in atmospheric mercury deposition are used to evaluate the effectiveness of regulations controlling emissions. This analysis can be complicated by seemingly incongruent data from different model runs, model types, and field measurements. Here we present a case study example that describes how to identify trends in regional scale mercury deposition using best-available information from multiple data sources. To do this, we use data from three atmospheric chemistry models (CMAQ, GEOS-Chem, HYSPLIT) and multiple sediment archives (ombrotrophic bog, headwater lake, coastal salt marsh) from the Bay of Fundy region in Canada. Combined sediment and modeling data indicate that deposition attributable to US and Canadian emissions has declined in recent years, thereby increasing the relative significance of global sources. We estimate that anthropogenic emissions in the US and Canada account for 28-33% of contemporary atmospheric deposition in this region, with the rest from natural (14-32%) and global sources (41-53%).


Subject(s)
Air Pollutants/analysis , Geologic Sediments/chemistry , Mercury/analysis , Models, Theoretical , Air Pollution/legislation & jurisprudence , Canada , Data Interpretation, Statistical , Environmental Monitoring/methods , Time , United States
5.
Environ Sci Technol ; 36(22): 4831-45, 2002 Nov 15.
Article in English | MEDLINE | ID: mdl-12487307

ABSTRACT

Atmospheric deposition is a significant loading pathway for polychlorinated dibenzo-p-dioxins and dibenzofurans (dioxin) to the Great Lakes. An innovative approach using NOAA's HYSPLIT atmospheric fate and transport model was developed to estimate the 1996 dioxin contribution to each lake from each of 5,700 point sources and 42,600 area sources in a U.S./Canadian air emissions inventory. These unusually detailed source-receptor modeling results show that deposition to each lake arises from a broad geographical region, with significant contributions from up to 2,000 km away. The source categories contributing most significantly to 1996 dioxin deposition appear to be municipal waste incineration, iron sintering, medical waste incineration, and cement kilns burning hazardous waste. Model-predicted air concentrations and deposition fluxes were consistent with ambient measurement data, within the uncertainties in each, but there may be a moderate tendency toward underestimation using midrange emissions estimates. The most likely reason for this tendency appears to be missing or underestimated emissions sources, but in-situ atmospheric formation of octachlorinated dibenzo-p-dioxin (OCDD) and heptachlorinated dibenzo-p-dioxin (HpCDD) may have also contributed. Despite uncertainties, the findings regarding the relative importance of different sources types and source regions appear to be relatively robust and may be useful in prioritizing pollution prevention efforts.


Subject(s)
Air Pollutants/analysis , Benzofurans/analysis , Models, Theoretical , Polychlorinated Dibenzodioxins/analogs & derivatives , Polychlorinated Dibenzodioxins/analysis , Soil Pollutants/analysis , Air Movements , Databases, Factual , Dibenzofurans, Polychlorinated , Great Lakes Region , Hazardous Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...