Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Surg Res ; 268: 168-173, 2021 12.
Article in English | MEDLINE | ID: mdl-34314883

ABSTRACT

BACKGROUND: Extracellular vehicles (EVs) released by malignant tumor cells can mediate the immune response and promote metastasis through intercellular communication. EV analysis is an emerging cancer surveillance tool with advantages over traditional liquid biopsy methods. The aim of this pilot study is to identify actionable EV signatures in metastatic breast cancer. MATERIALS AND METHODS: Under an IRB-approved protocol for the analysis of patient plasma, samples were collected from women with newly diagnosed or progressive metastatic breast cancer and from women without cancer. Enriched EVs were analyzed via a bead-based multiplex assay designed to detect 37 distinct tumor-relevant epitopes. The mean fluorescent intensity of EV epitopes meeting a minimum threshold of detectability was compared between groups via independent samples t-test. Subgroup analysis was conducted for metastatic breast cancer patients who were positive for estrogen and/or progesterone receptors and negative for HER2. Other variables potentially affecting CD105 levels were also analyzed. RESULTS: CD105 was found to have a significantly higher mean fluorescent intensity in participants with metastatic breast cancer compared to control participants (P = 0.04). ER/PR+ subgroup analysis revealed a similar pattern compared to control participants (P = 0.01). Other analyzed variables were not found to have a significant correlation with CD105 levels. CONCLUSIONS: CD105 EV levels were significantly higher in samples from participants with breast cancer compared to controls. Given that CD105 is known to mediate angiogenesis and promote metastasis, EV-associated CD105 in plasma represents a potential biomarker for diagnosis, surveillance and therapeutic targeting in patients with metastatic breast cancer.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , Biomarkers , Biomarkers, Tumor , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Extracellular Vesicles/pathology , Female , Humans , Pilot Projects , Receptors, Progesterone
2.
Inflamm Res ; 69(7): 631-633, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32303780

ABSTRACT

OBJECTIVE AND DESIGN: CHRFAM7A is a unique human gene that encodes a dominant negative inhibitor of the α7 nicotinic acetylcholine receptor. We have recently shown that CHRFAM7A is expressed in human leukocytes, increases cel-cell adhesion, and regulates the expression of genes associated with leukocyte migration. MATERIAL: Human THP-1, RAW264.7 and HEK293 cells. METHODS: Cell migration, cell proliferation and colony formation in soft agar to compare the biological activity of vector vs. CHRFAM7A-transduced cells. RESULTS: We show that gene delivery of CHRFAM7A into the THP-1 human monocytic cell line reduces cell migration, reduces chemotaxis to monocyte chemoattractant protein, and reduces colony formation in soft agar. CONCLUSION: Taken together, the findings demonstrate that CHRFAM7A regulates the biological activity of monocytes/macrophages to migrate and undergo anchorage-independent growth in vitro.


Subject(s)
alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , Animals , Cell Adhesion/physiology , Cell Movement/genetics , Cell Movement/physiology , Cell Proliferation/physiology , Gene Expression , Gene Expression Regulation , HEK293 Cells , Humans , Leukocytes , Macrophages/physiology , Mice , Monocytes/physiology , RAW 264.7 Cells , Stem Cells/physiology , THP-1 Cells , Transduction, Genetic , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/physiology
3.
Sci Adv ; 6(11): eaay0518, 2020 03.
Article in English | MEDLINE | ID: mdl-32195341

ABSTRACT

The complex molecular microenvironment of the wound bed regulates the duration and degree of inflammation in the wound repair process, while its dysregulation leads to impaired healing. Understanding factors controlling this response provides therapeutic targets for inflammatory disease. Esophageal cancer-related gene 4 (ECRG4) is a candidate chemokine that is highly expressed on leukocytes. We used ECRG4 knockout (KO) mice to establish that the absence of ECRG4 leads to defective neutrophil recruitment with a delay in wound healing. An in vitro human promyelocyte model identified an ECRG4-mediated suppression of the hyaluronic acid receptor, CD44, a key receptor mediating inflammation resolution. In ECRG4 KO mouse leukocytes, there was an increase in CD44 expression, consistent with a model in which ECRG4 negatively regulates CD44 levels. Therefore, we propose a previously unidentified mechanism in which ECRG4 regulates early neutrophil recruitment and subsequent CD44-mediated resolution of inflammation.


Subject(s)
Gene Expression Regulation , Hyaluronan Receptors/biosynthesis , Neoplasm Proteins/metabolism , Neutrophils/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Humans , Hyaluronan Receptors/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Neutrophils/pathology , Tumor Suppressor Proteins/genetics
4.
Proc Natl Acad Sci U S A ; 116(16): 7932-7940, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30944217

ABSTRACT

A subset of genes in the human genome are uniquely human and not found in other species. One example is CHRFAM7A, a dominant-negative inhibitor of the antiinflammatory α7 nicotinic acetylcholine receptor (α7nAChR/CHRNA7) that is also a neurotransmitter receptor linked to cognitive function, mental health, and neurodegenerative disease. Here we show that CHRFAM7A blocks ligand binding to both mouse and human α7nAChR, and hypothesized that CHRFAM7A-transgenic mice would allow us to study its biological significance in a tractable animal model of human inflammatory disease, namely SIRS, the systemic inflammatory response syndrome that accompanies severe injury and sepsis. We found that CHRFAM7A increased the hematopoietic stem cell (HSC) reservoir in bone marrow and biased HSC differentiation to the monocyte lineage in vitro. We also observed that while the HSC reservoir was depleted in SIRS, HSCs were spared in CHRFAM7A-transgenic mice and that these mice also had increased immune cell mobilization, myeloid cell differentiation, and a shift to inflammatory monocytes from granulocytes in their inflamed lungs. Together, the findings point to a pathophysiological inflammatory consequence to the emergence of CHRFAM7A in the human genome. To this end, it is interesting to speculate that human genes like CHRFAM7A can account for discrepancies between the effectiveness of drugs like α7nAChR agonists in animal models and human clinical trials for inflammatory and neurodegenerative disease. The findings also support the hypothesis that uniquely human genes may be contributing to underrecognized human-specific differences in resiliency/susceptibility to complications of injury, infection, and inflammation, not to mention the onset of neurodegenerative disease.


Subject(s)
Hematopoietic Stem Cells , alpha7 Nicotinic Acetylcholine Receptor , Animals , Cells, Cultured , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/physiology , Humans , Inflammation/genetics , Inflammation/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/immunology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/physiology
5.
Neurosci Lett ; 690: 126-131, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30308236

ABSTRACT

INTRODUCTION: CHRFAM7A is a uniquely-human gene that encodes a human-specific variant of the alpha-7 nicotinic acetylcholine receptor (α7nAchR). While the homopentameric α7nAChR consists of 5 equal subunits, previous studies demonstrated that CHRFAM7A expression disrupts the formation of α7nAChR homopentamers. Here we use a rat neuronal cell line expressing CHRFAM7A and a transgenic mouse expressing CHRFAM7A to define the alpha-bungarotoxin (α-BTX) binding in vitro and in vivo. METHODS: Rat PC12 cells were stably transfected with human CHRFAM7A. α-BTX, a protein that irreversibly binds the α7nAchR, was utilized to assess the capacity for CHRFAM7A to interfere with α 7AchR subunits using immunohistochemistry and flow cytometry. To evaluate the effects of CHRFAM7A on α7nAchR at the neuromuscular junction in vivo, transgenic mice were engineered to express the uniquely human gene CHRFAM7A under the control of the EF1-α promoter. Using this model, muscle was harvested and CHRFAM7A and CHRNA7 gene expression evaluated by PCR. Binding of α-BTX to the α7nAchR in muscle was compared in sibling-matched wild-type C57 mice by immunostaining the neuromuscular junction using α-BTX and neurofilament antibodies. RESULTS: Expression of CHRFAM7A in transfected, but not vector cells, was confirmed by PCR and by immunoblotting using an antibody we raised to a peptide sequence unique to CHRFAM7A. CHRFAM7A decreased α-BTX binding as detected by immunohistochemistry and flow cytometry. In vivo, α-BTX co-stained with neurofilament at the neuromuscular junction in wild-type mice, however, α-BTX staining was decreased at the neuromuscular junction of CHRFAM7A transgenic mice. CONCLUSION: CHRFAM7A expression interferes with the binding of α7nAchR to α-BTX. Understanding the contribution of this uniquely human gene to human disease will be important in the identification of potential therapeutic targets.


Subject(s)
Bungarotoxins/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Cells, Cultured , Humans , Intermediate Filaments/immunology , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Neuromuscular Junction/metabolism , Rats , alpha7 Nicotinic Acetylcholine Receptor/biosynthesis , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/immunology
6.
Transl Oncol ; 7(6): 741-51, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25500084

ABSTRACT

Mantle cell lymphoma (MCL) is a hematological malignancy with unfavorable prognosis. Novel therapeutic approaches for treating the disease are aimed at the mechanisms regulating growth signals, cellular proliferation, and survival pathways of the malignant clones. Bortezomib (Brt), a proteasome inhibitor with pleiotropic activities was shown to be active in MCL and is currently implemented in therapeutic combinations for this disease. Telomerase activity is essential for survival of malignant cells and as such is considered a valid therapeutic target. This study evaluated the effects of bortezomib on telomerase activity and its regulation in MCL cells in vitro and ex vivo. Our study shows that bortezomib exerts a cytotoxic effect in a dose dependent manner in two MCL cell lines, with differential sensitivity. While the IC50 for HBL-2 cells ranged between 2.5 ng/ml to 1.5 ng/ml during 24-72 h respectively, the IC50 for the NCEB cells was twice. Bortezomib differentially inhibited telomerase activity (TA): in HBL-2 cells there was a decline of 20%-55% during 24-72 h respectively. However in NCEB cells the decline was much smaller, and did not exceed 25%. Inhibition of telomerase activity is shown to be operated by two separate mechanisms: reduction of the hTERT mRNA expression (controlled by the binding of transcription factors) and reduction in phosphorylation of the catalytic subunit of hTERT by its kinases, AKT and PKCα. A decrease in telomerase activity was demonstrated also in mononuclear cells, isolated from three MCL patients following incubation of the cells in the presence of bortezomib for 24-72 h. In one patient the decrease in TA ranged between 17%-37% respectively, in the second patient between 63%-76% and in the third patient between 70-100% for 24-72 h respectively. The current study indicates that a combination of bortezomib and rapamycin, (an m-Tor pathway inhibitor used in MCL treatment) induced synergistic inhibition of telomerase activity. In HBL-2 cells, the combined treatment of bortezomib and rapamycin decreased TA by 80% compared to the expected value (40%) and for NCEB cells a similar trend was observed. In contrast, there was neither additive nor synergistic effect of this combination on cell proliferation. In the light of the crucial role of telomerase in cancer cells, it was important to characterize the possible relations between telomerase and bortezomib and to distinguish the biochemical mechanisms of its regulation and its interactions with other signal transduction inhibitors such as rapamycin. The results of this work encourage the in vivo examination of the therapeutic potential of the combination of bortezomib and rapamycin in Mantle Cell Lymphoma patients.

7.
Cancer Res ; 74(14): 3753-63, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-25028366

ABSTRACT

Neuroblastoma is a pediatric cancer with significant genomic and biologic heterogeneity. p16 and ARF, two important tumor-suppressor genes on chromosome 9p21, are inactivated commonly in most cancers, but paradoxically overexpressed in neuroblastoma. Here, we report that exon γ in p16 is also part of an undescribed long noncoding RNA (lncRNA) that we have termed CAI2 (CDKN2A/ARF Intron 2 lncRNA). CAI2 is a single-exon gene with a poly A signal located in but independent of the p16/ARF exon 3. CAI2 is expressed at very low levels in normal tissue, but is highly expressed in most tumor cell lines with an intact 9p21 locus. Concordant expression of CAI2 with p16 and ARF in normal tissue along with the ability of CAI2 to induce p16 expression suggested that CAI2 may regulate p16 and/or ARF. In neuroblastoma cells transformed by serial passage in vitro, leading to more rapid proliferation, CAI2, p16, and ARF expression all increased dramatically. A similar relationship was also observed in primary neuroblastomas where CAI2 expression was significantly higher in advanced-stage neuroblastoma, independently of MYCN amplification. Consistent with its association with high-risk disease, CAI2 expression was also significantly associated with poor clinical outcomes, although this effect was reduced when adjusted for MYCN amplification. Taken together, our findings suggested that CAI2 contributes to the paradoxical overexpression of p16 in neuroblastoma, where CAI2 may offer a useful biomarker of high-risk disease.


Subject(s)
Chromosomes, Human, Pair 9 , Gene Expression Regulation, Neoplastic , Neuroblastoma/genetics , Neuroblastoma/pathology , RNA, Long Noncoding/genetics , ADP-Ribosylation Factors/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Child , Child, Preschool , Cyclin-Dependent Kinase Inhibitor p16/genetics , Follow-Up Studies , Gene Expression , Gene Order , Humans , Infant , Infant, Newborn , Neoplasm Staging , Neuroblastoma/mortality , Prognosis , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...