Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (195)2023 05 12.
Article in English | MEDLINE | ID: mdl-37246866

ABSTRACT

This paper presents a protocol for the convenient and high-throughput isolation and enrichment of glandular capitate stalked and sessile trichomes from Cannabis sativa. The biosynthetic pathways for cannabinoid and volatile terpene metabolism are localized primarily in the Cannabis trichomes, and isolated trichomes are beneficial for transcriptome analysis. The existing protocols for isolating glandular trichomes for transcriptomic characterization are inconvenient and deliver compromised trichome heads and a relatively low amount of isolated trichomes. Furthermore, they rely on expensive apparatus and isolation media containing protein inhibitors to avoid RNA degradation. The present protocol suggests combining three individual modifications to obtain a large amount of isolated glandular capitate stalked and sessile trichomes from C. sativa mature female inflorescences and fan leaves, respectively. The first modification involves substituting liquid nitrogen for the conventional isolation medium to facilitate the passage of trichomes through the micro-sieves. The second modification involves using dry ice to detach the trichomes from the plant source. The third modification involves passing the plant material consecutively through five micro-sieves of diminishing pore sizes. Microscopic imaging demonstrated the effectiveness of the isolation technique for both trichome types. In addition, the quality of RNA extracted from the isolated trichomes was appropriate for downstream transcriptomic analysis.


Subject(s)
Cannabinoids , Cannabis , Cannabis/genetics , Cannabis/metabolism , Trichomes/genetics , Trichomes/metabolism , Cannabinoids/metabolism , Plant Leaves/metabolism , Upper Extremity
2.
J Insect Sci ; 21(4)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34280295

ABSTRACT

The construction of vehicular roads likely affects the distribution of natural resources. Although the effects of roads on different ecosystem aspects have been extensively studied, studies in arid and, particularly, in hyper-arid ecosystems are scarce. In drylands, where water is the main limiting factor, the effect of roads on the redistribution of water may have strong subsequent effects on the ecosystem, especially when roads cross natural water flow paths. To fill this knowledge gap, we studied the effects of a road that runs across a slope on the distribution of plants and animals in a hyper-arid environment. Changes in shrub cover, below and above the road, were quantified by remote sensing and image classification, while plant-associated arthropods were vacuum-sampled from shrub canopies and from open (inter-shrub) areas. We found that the spatial distribution of shrubs, a vital resource facilitating many other organisms, was affected by the road, with an increase in the shrub cover immediately above the road and a decrease below it. Arthropod abundance generally followed shrub cover, but the exact pattern depended on the specific group sampled. While some arthropod groups (e.g., aphids, parasitic wasps and barklice) thrived under the disturbed conditions above the road, other arthropod groups (e.g., mites and true bugs) were less abundant in the disturbed patches. Our results highlight the strong effects of human-made structures on the distribution of flora and fauna in arid ecosystems.


Subject(s)
Arthropods , Desert Climate , Ecosystem , Animals , Ecological Parameter Monitoring , Plants , Soil , Water Supply
3.
Sci Rep ; 11(1): 13437, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183759

ABSTRACT

Whole organ perfusion decellularization has been proposed as a promising method to generate non-immunogenic organs from allogeneic and xenogeneic donors. However, the ability to recellularize organ scaffolds with multiple patient-specific cells in a spatially controlled manner remains challenging. Here, we propose that replacing donor endothelial cells alone, while keeping the rest of the organ viable and functional, is more technically feasible, and may offer a significant shortcut in the efforts to engineer transplantable organs. Vascular decellularization was achieved ex vivo, under controlled machine perfusion conditions, in various rat and porcine organs, including the kidneys, liver, lungs, heart, aorta, hind limbs, and pancreas. In addition, vascular decellularization of selected organs was performed in situ, within the donor body, achieving better control over the perfusion process. Human placenta-derived endothelial progenitor cells (EPCs) were used as immunologically-acceptable human cells to repopulate the luminal surface of de-endothelialized aorta (in vitro), kidneys, lungs and hind limbs (ex vivo). This study provides evidence that artificially generating vascular chimerism is feasible and could potentially pave the way for crossing the immunological barrier to xenotransplantation, as well as reducing the immunological burden of allogeneic grafts.


Subject(s)
Endothelial Cells/cytology , Regenerative Medicine/methods , Tissue Engineering/methods , Tissue Scaffolds , Transplantation Chimera/anatomy & histology , Transplantation, Heterologous/methods , Animals , Chimerism , Female , Hindlimb/blood supply , Hindlimb/transplantation , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Swine , Tissue and Organ Harvesting , Viscera/blood supply , Viscera/transplantation
4.
Artif Organs ; 44(10): 1073-1080, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32299137

ABSTRACT

Perfusion decellularization has been proposed as a promising method for generating nonimmunogenic organs from allogeneic or xenogeneic donors. Several imaging modalities have been used to assess vascular integrity in bioengineered organs with no consistency in the methodology used. Here, we studied the use of fluoroscopic angiography performed under controlled flow conditions for vascular integrity assessment in bioengineered kidneys. Porcine kidneys underwent ex vivo angiography before and after perfusion decellularization. Arterial and venous patencies were defined as visualization of contrast medium (CM) in distal capillaries and renal vein, respectively. Changes in vascular permeability were visualized and quantified. No differences in patency were detected in decellularized kidneys compared with native kidneys. However, focal parenchymal opacities and significant delay in CM clearance were detected in decellularized kidneys, indicating increased permeability. Biopsy-induced leakage was visualized in both groups, with digital subtraction angiography revealing minimal CM leakage earlier than nonsubtracted fluoroscopy. In summary, quantitative assessment of vascular permeability should be coupled with patency when studying the effect of perfusion decellularization on kidney vasculature. Flow-controlled angiography should be considered as the method of choice for vascular assessment in bioengineered kidneys. Adopting this methodology for organs premodified ex vivo under normothermic machine perfusion settings is also suggested.


Subject(s)
Angiography, Digital Subtraction/methods , Kidney Transplantation/methods , Kidney/blood supply , Tissue Engineering/methods , Tissue and Organ Harvesting/methods , Animals , Capillary Permeability , Feasibility Studies , Female , Fluoroscopy/methods , Graft Rejection/immunology , Graft Rejection/prevention & control , Humans , Kidney/cytology , Kidney/immunology , Kidney Transplantation/adverse effects , Reproducibility of Results , Sus scrofa , Transplantation, Heterologous/methods , Transplantation, Homologous/methods
5.
Plant J ; 96(2): 343-357, 2018 10.
Article in English | MEDLINE | ID: mdl-30044900

ABSTRACT

The sugar content of Solanum lycopersicum (tomato) fruit is a primary determinant of taste and quality. Cultivated tomato fruit are characterized by near-equimolar levels of the hexoses glucose and fructose, derived from the hydrolysis of translocated sucrose. As fructose is perceived as approximately twice as sweet as glucose, increasing its concentration at the expense of glucose can improve tomato fruit taste. Introgressions of the FgrH allele from the wild species Solanum habrochaites (LA1777) into cultivated tomato increased the fructose-to-glucose ratio of the ripe fruit by reducing glucose levels and concomitantly increasing fructose levels. In order to identify the function of the Fgr gene, we combined a fine-mapping strategy with RNAseq differential expression analysis of near-isogenic tomato lines. The results indicated that a SWEET protein was strongly upregulated in the lines with a high fructose-to-glucose ratio. Overexpressing the SWEET protein in transgenic tomato plants dramatically reduced the glucose levels and increased the fructose : glucose ratio in the developing fruit, thereby proving the function of the protein. The SWEET protein was localized to the plasma membrane and expression of the SlFgr gene in a yeast line lacking native hexose transporters complemented growth with glucose, but not with fructose. These results indicate that the SlFgr gene encodes a plasma membrane-localized glucose efflux transporter of the SWEET family, the overexpression of which reduces glucose levels and may allow for increased fructose levels. This article identifies the function of the tomato Fgr gene as a SWEET transporter, the upregulation of which leads to a modified sugar accumulation pattern in the fleshy fruit. The results point to the potential of the inedible wild species to improve fruit sugar accumulation via sugar transport mechanisms.


Subject(s)
Genetic Variation , Membrane Transport Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Sugars/metabolism , Fructose/metabolism , Fruit/genetics , Fruit/growth & development , Glucose/metabolism , Hexoses/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Membrane Transport Proteins/genetics , Monosaccharide Transport Proteins/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Sucrose/metabolism
6.
Acta Biomater ; 65: 248-258, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29101018

ABSTRACT

Animal-derived pericardial tissue is a widely used biomaterial typically treated with glutaraldehyde (GA) to achieve immunological acceptance and long-term durability. However, GA fixation of biological tissue is associated with long-term failure due to degeneration and calcification. In this study, we evaluated two alternative tissue processing methods for the fabrication of pericardial tissue covered stents: detergent-based decellularization (decell) and limited exposure to GA (gentle-glut). Processed pericardial tissues were extensively characterized both in-vitro and in-vivo. Small-diameter covered stents were fabricated and the ability to seal perforation was evaluated in a flow circuit under physiological blood flow conditions. Results indicate that decell-treated tissue appeared with preserved architecture, tissue strength and stability. Gentle-glut tissue appeared with preserved architecture and increased tissue stability, compared to fresh, unprocessed tissue. Reduction of bioburden was demonstrated for both types of alternative treatments, as for GA fixation. Tensile testing demonstrated that both decell- and gentle-glut treated tissues respond better to low strain, as may occur during balloon inflation and stent deployment. Upon subcutaneous implantation in mice, gentle-glut and to a greater degree decell-treated tissue, elicit better host response, with evidence of active tissue remodeling and no detectable calcification, as compared with GA-treated tissue. Small-diameter stents covered with tissues from all groups successfully sealed perforation under physiological blood flow conditions in-vitro, without compromising flow. In summary, covered stents may perform better with pericardial tissue processed according to the methods described in this study. Adopting this methodology to other types of cardiovascular implants and tissues is also suggested. STATEMENT OF SIGNIFICANCE: Pericardial tissue is a widely used biomaterial for cardiovascular implants, such as covered stents. The use of glutaraldehyde (GA) has become the method of choice for pericardial tissue fixation, making it immunologically acceptable in humans. However, GA-treated tissue is prone to several problems, such as degeneration and calcification that may lead to long-term failure. Here, we studied two alternative tissue processing techniques: fixative-free decellularization and limited exposure to GA. We've shown that both methods achieve better mechanical properties and promote better host acceptance, tissue remodeling and long-term durability. Since the availability of autologous tissue for transplantation is limited, these methods should be adopted for other types of cardiovascular devices, such as bioprosthetic valves, ultimately achieving better long-term results for patients.


Subject(s)
Blood Vessel Prosthesis , Coated Materials, Biocompatible , Pericardium , Prosthesis Design , Stents , Animals , Detergents/chemistry , Glutaral/chemistry , Materials Testing , Mice , Swine , Tensile Strength
7.
BMC Genomics ; 18(1): 579, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28778147

ABSTRACT

BACKGROUND: The destructive phytopathogen Colletotrichum gloeosporioides causes anthracnose disease in fruit. During host colonization, it secretes ammonia, which modulates environmental pH and regulates gene expression, contributing to pathogenicity. However, the effect of host pH environment on pathogen colonization has never been evaluated. Development of an isogenic tomato line with reduced expression of the gene for acidity, SlPH (Solyc10g074790.1.1), enabled this analysis. Total RNA from C. gloeosporioides colonizing wild-type (WT) and RNAi-SlPH tomato lines was sequenced and gene-expression patterns were compared. RESULTS: C. gloeosporioides inoculation of the RNAi-SlPH line with pH 5.96 compared to the WT line with pH 4.2 showed 30% higher colonization and reduced ammonia accumulation. Large-scale comparative transcriptome analysis of the colonized RNAi-SlPH and WT lines revealed their different mechanisms of colonization-pattern activation: whereas the WT tomato upregulated 13-LOX (lipoxygenase), jasmonic acid and glutamate biosynthesis pathways, it downregulated processes related to chlorogenic acid biosynthesis II, phenylpropanoid biosynthesis and hydroxycinnamic acid tyramine amide biosynthesis; the RNAi-SlPH line upregulated UDP-D-galacturonate biosynthesis I and free phenylpropanoid acid biosynthesis, but mainly downregulated pathways related to sugar metabolism, such as the glyoxylate cycle and L-arabinose degradation II. Comparison of C. gloeosporioides gene expression during colonization of the WT and RNAi-SlPH lines showed that the fungus upregulates ammonia and nitrogen transport and the gamma-aminobutyric acid metabolic process during colonization of the WT, while on the RNAi-SlPH tomato, it mainly upregulates the nitrate metabolic process. CONCLUSIONS: Modulation of tomato acidity and pH had significant phenotypic effects on C. gloeosporioides development. The fungus showed increased colonization on the neutral RNAi-SlPH fruit, and limited colonization on the WT acidic fruit. The change in environmental pH resulted in different defense responses for the two tomato lines. Interestingly, the WT line showed upregulation of jasmonate pathways and glutamate accumulation, supporting the reduced symptom development and increased ammonia accumulation, as the fungus might utilize glutamate to accumulate ammonia and increase environmental pH for better expression of pathogenicity factors. This was not found in the RNAi-SlPH line which downregulated sugar metabolism and upregulated the phenylpropanoid pathway, leading to host susceptibility.


Subject(s)
Colletotrichum/genetics , Colletotrichum/physiology , Fruit/genetics , Gene Expression Profiling , RNA Interference , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Cyclopentanes/metabolism , Fruit/chemistry , Gene Ontology , Genes, Fungal/genetics , Glutamic Acid/metabolism , Glutamine/metabolism , Solanum lycopersicum/metabolism , Oxylipins/metabolism , Propanols/metabolism , Sugars/metabolism
8.
Proc Natl Acad Sci U S A ; 113(47): E7619-E7628, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27821754

ABSTRACT

The consumption of sweeteners, natural as well as synthetic sugars, is implicated in an array of modern-day health problems. Therefore, natural nonsugar sweeteners are of increasing interest. We identify here the biosynthetic pathway of the sweet triterpenoid glycoside mogroside V, which has a sweetening strength of 250 times that of sucrose and is derived from mature fruit of luo-han-guo (Siraitia grosvenorii, monk fruit). A whole-genome sequencing of Siraitia, leading to a preliminary draft of the genome, was combined with an extensive transcriptomic analysis of developing fruit. A functional expression survey of nearly 200 candidate genes identified the members of the five enzyme families responsible for the synthesis of mogroside V: squalene epoxidases, triterpenoid synthases, epoxide hydrolases, cytochrome P450s, and UDP-glucosyltransferases. Protein modeling and docking studies corroborated the experimentally proven functional enzyme activities and indicated the order of the metabolic steps in the pathway. A comparison of the genomic organization and expression patterns of these Siraitia genes with the orthologs of other Cucurbitaceae implicates a strikingly coordinated expression of the pathway in the evolution of this species-specific and valuable metabolic pathway. The genomic organization of the pathway genes, syntenously preserved among the Cucurbitaceae, indicates, on the other hand, that gene clustering cannot account for this novel secondary metabolic pathway.


Subject(s)
Biosynthetic Pathways , Cucurbitaceae/growth & development , Plant Proteins/genetics , Triterpenes/metabolism , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Epoxide Hydrolases/chemistry , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Models, Molecular , Molecular Docking Simulation , Plant Proteins/chemistry , Plant Proteins/metabolism , Sequence Analysis, DNA/methods , Squalene Monooxygenase/chemistry , Squalene Monooxygenase/genetics , Squalene Monooxygenase/metabolism
9.
Mhealth ; 2: 20, 2016.
Article in English | MEDLINE | ID: mdl-28293596

ABSTRACT

Parkinson's disease (PD) is a progressive, degenerative disorder of the central nervous system that is diagnosed and measured clinically by the Unified Parkinson's Disease Rating Scale (UPDRS). Tools for continuous and objective monitoring of PD motor symptoms are needed to complement clinical assessments of symptom severity to further inform PD therapeutic development across several arenas, from developing more robust clinical trial outcome measures to establishing biomarkers of disease progression. The Michael J. Fox Foundation for Parkinson's Disease Research and Intel Corporation have joined forces to develop a mobile application and an Internet of Things (IoT) platform to support large-scale studies of objective, continuously sampled sensory data from people with PD. This platform provides both population and per-patient analyses, measuring gait, activity level, nighttime activity, tremor, as well as other structured assessments and tasks. All data collected will be available to researchers on an open-source platform. Development of the IoT platform raised a number of engineering considerations, including wearable sensor choice, data management and curation, and algorithm validation. This project has successfully demonstrated proof of concept that IoT platforms, wearable technologies and the data they generate offer exciting possibilities for more robust, reliable, and low-cost research methodologies and patient care strategies.

10.
Yeast ; 32(1): 103-14, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25308777

ABSTRACT

Cucurbitacins are a group of bitter-tasting oxygenated tetracyclic triterpenes that are produced in the family Cucurbitaceae and other plant families. The natural roles of cucurbitacins in plants are probably related to defence against pathogens and pests. Cucurbitadienol, a triterpene synthesized from oxidosqualene, is the first committed precursor to cucurbitacins produced by a specialized oxidosqualene cyclase termed cucurbitadienol synthase. We explored cucurbitacin accumulation in watermelon in relation to bitterness. Our findings show that cucurbitacins are accumulated in bitter-tasting watermelon, Citrullus lanatus var. citroides, as well as in their wild ancestor, C. colocynthis, but not in non-bitter commercial cultivars of sweet watermelon (C. lanatus var. lanatus). Molecular analysis of genes expressed in the roots of several watermelon accessions led to the isolation of three sequences (CcCDS1, CcCDS2 and ClCDS1), all displaying high similarity to the pumpkin CpCPQ, encoding a protein previously shown to possess cucurbitadienol synthase activity. We utilized the Saccharomyces cerevisiae strain BY4743, heterozygous for lanosterol synthase, to probe for possible encoded cucurbitadienol synthase activity of the expressed watermelon sequences. Functional expression of the two sequences isolated from C. colocynthis (CcCDS1 and CcCDS2) in yeast revealed that only CcCDS2 possessed cucurbitadienol synthase activity, while CcCDS1 did not display cucurbitadienol synthase activity in recombinant yeast. ClCDS1 isolated from C. lanatus var. lanatus is almost identical to CcCDS1. Our results imply that CcCDS2 plays a role in imparting bitterness to watermelon. Yeast has been an excellent diagnostic tool to determine the first committed step of cucurbitacin biosynthesis in watermelon.


Subject(s)
Citrullus/metabolism , Cucurbitacins/biosynthesis , Flavoring Agents/metabolism , Plant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Citrullus/chemistry , Citrullus/enzymology , Citrullus/genetics , Humans , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Saccharomyces cerevisiae/genetics , Sequence Alignment , Taste
11.
Nat Commun ; 5: 4026, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24898284

ABSTRACT

Taste has been the subject of human selection in the evolution of agricultural crops, and acidity is one of the three major components of fleshy fruit taste, together with sugars and volatile flavour compounds. We identify a family of plant-specific genes with a major effect on fruit acidity by map-based cloning of C. melo PH gene (CmPH) from melon, Cucumis melo taking advantage of the novel natural genetic variation for both high and low fruit acidity in this species. Functional silencing of orthologous PH genes in two distantly related plant families, cucumber and tomato, produced low-acid, bland tasting fruit, showing that PH genes control fruit acidity across plant families. A four amino-acid duplication in CmPH distinguishes between primitive acidic varieties and modern dessert melons. This fortuitous mutation served as a preadaptive antecedent to the development of sweet melon cultigens in Central Asia over 1,000 years ago.


Subject(s)
Cucumis melo/genetics , Cucumis sativus/genetics , Fruit/chemistry , Plant Proteins/genetics , Solanum lycopersicum/genetics , Citric Acid/analysis , Cucumis melo/chemistry , Cucumis sativus/chemistry , Fruit/genetics , Hydrogen-Ion Concentration , Solanum lycopersicum/chemistry , Malates/analysis
12.
Theor Appl Genet ; 126(2): 349-58, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23070028

ABSTRACT

The availability of sequence information for many plants has opened the way to advanced genetic analysis in many non-model plants. Nevertheless, exploration of genetic variation on a large scale and its use as a tool for the identification of traits of interest are still rare. In this study, we combined a bulk segregation approach with our own-designed microarrays to map the pH locus that influences fruit pH in melon. Using these technologies, we identified a set of markers that are genetically linked to the pH trait. Further analysis using a set of melon cultivars demonstrated that some of these markers are tightly linked to the pH trait throughout our germplasm collection. These results validate the utility of combining microarray technology with a bulk segregation approach in mapping traits of interest in non-model plants.


Subject(s)
Biomarkers/metabolism , Chromosome Segregation , Cucurbitaceae/genetics , Gene Expression Profiling , Genes, Plant/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci , Chromosome Mapping , Hydrogen-Ion Concentration , Linkage Disequilibrium , Oligonucleotide Array Sequence Analysis , Phenotype
13.
BMC Plant Biol ; 11: 111, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21797998

ABSTRACT

BACKGROUND: A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). RESULTS: Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. CONCLUSIONS: Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).


Subject(s)
Chromosome Mapping , Crops, Agricultural/genetics , Cucumis melo/genetics , Quantitative Trait Loci , Chromosomes, Plant , Genetic Linkage , Genetic Markers , Genome, Plant , Polymorphism, Genetic , Sequence Analysis, DNA
14.
Plant Mol Biol ; 76(1-2): 1-18, 2011 May.
Article in English | MEDLINE | ID: mdl-21387125

ABSTRACT

The sweet melon fruit is characterized by a metabolic transition during its development that leads to extensive accumulation of the disaccharide sucrose in the mature fruit. While the biochemistry of the sugar metabolism pathway of the cucurbits has been well studied, a comprehensive analysis of the pathway at the transcriptional level allows for a global genomic view of sugar metabolism during fruit sink development. We identified 42 genes encoding the enzymatic reactions of the sugar metabolism pathway in melon. The expression pattern of the 42 genes during fruit development of the sweet melon cv Dulce was determined from a deep sequencing analysis performed by 454 pyrosequencing technology, comprising over 350,000 transcripts from four stages of developing melon fruit flesh, allowing for digital expression of the complete metabolic pathway. The results shed light on the transcriptional control of sugar metabolism in the developing sweet melon fruit, particularly the metabolic transition to sucrose accumulation, and point to a concerted metabolic transition that occurs during fruit development.


Subject(s)
Cucumis melo/genetics , Cucumis melo/metabolism , Gene Expression Profiling , Sucrose/metabolism , Cluster Analysis , Cucumis melo/growth & development , Enzymes/classification , Enzymes/genetics , Enzymes/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Library , Metabolic Networks and Pathways/genetics , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Plant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Solubility , Sucrose/chemistry
15.
Tissue Eng Part A ; 16(10): 3119-37, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20486794

ABSTRACT

The use of stem cells for tissue engineering (TE) encourages scientists to design new platforms in the field of regenerative and reconstructive medicine. Human embryonic stem cells (hESC) have been proposed to be an important cell source for cell-based TE applications as well as an exciting tool for investigating the fundamentals of human development. Here, we describe the efficient derivation of connective tissue progenitors (CTPs) from hESC lines and fetal tissues. The CTPs were significantly expanded and induced to generate tendon tissues in vitro, with ultrastructural characteristics and biomechanical properties typical of mature tendons. We describe a simple method for engineering tendon grafts that can successfully repair injured Achilles tendons and restore the ankle joint extension movement in mice. We also show the CTP's ability to differentiate into bone, cartilage, and fat both in vitro and in vivo. This study offers evidence for the possibility of using stem cell-derived engineered grafts to replace missing tissues, and sets a basic platform for future cell-based TE applications in the fields of orthopedics and reconstructive surgery.


Subject(s)
Connective Tissue Cells/cytology , Embryonic Stem Cells/cytology , Fetus/cytology , Stem Cells/cytology , Tendon Injuries/therapy , Tissue Engineering/methods , Animals , Cells, Cultured , Connective Tissue Cells/metabolism , Connective Tissue Cells/ultrastructure , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/ultrastructure , Fetus/ultrastructure , Humans , Karyotyping , Mice , Mice, Nude , Microscopy, Electron, Transmission , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/ultrastructure , Tendon Injuries/metabolism
16.
Methods Enzymol ; 420: 303-15, 2006.
Article in English | MEDLINE | ID: mdl-17161703

ABSTRACT

The possibility of using stem cells for tissue engineering has greatly encouraged scientists to design new platforms in the field of regenerative and reconstructive medicine. Stem cells have the ability to rejuvenate and repair damaged tissues and can be derived from both embryonic and adult sources. Among cell types suggested as a cell source for tissue engineering (TE), human embryonic stem cells (hESCs) are one of the most promising candidates. Isolated from the inner cell mass of preimplantation stage blastocysts, they possess the ability to differentiate into practically all adult cell types. In addition, their unlimited self-renewal capacity enables the generation of sufficient amount of cells for cell-based TE applications. Yet, several important challenges are to be addressed, such as the isolation of the desired cell type and gaining control over its differentiation and proliferation. Ultimately, combing scaffolding and bioactive stimuli, newly designed bioengineered constructs, could be assembled and applied to various clinical applications. Here we define the culture conditions for the derivation of connective tissue lineage progenitors, design strategies, and highlight the special considerations when using hESCs for TE applications.


Subject(s)
Connective Tissue Cells/cytology , Culture Media , Embryonic Stem Cells/cytology , Tissue Engineering/methods , Cell Culture Techniques/methods , Culture Media/standards , Embryonic Stem Cells/classification , Humans
17.
Tissue Eng ; 12(7): 2025-30, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16889530

ABSTRACT

Embryonic stem cells (ESCs) are being investigated increasingly for their potential as a cell source for tissue engineering. Antibiotics are regularly used in ESC culture media to control contamination, although they can be cytotoxic and interfere with protein synthesis. Our aim was to examine the effects of the frequently used antibiotics gentamicin and combined penicillin and streptomycin on ESC culture using differentiation of murine ESC into type II pneumocytes as a model. Antibiotics reduced the expression of the specific marker for type II pneumocytes, SPC mRNA, by up to 60%. We also identified an adverse effect on the growth rate of differentiating embryoid bodies, causing a significant ( p < 0.05) reduction of up to 40%, and an increase in population doubling time of up to 48%. No contamination was seen in any of the cultures. Our findings suggest that the routine use of antibiotics in ESC culture should be avoided as it may reduce the efficiency of the culture system.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Embryo, Mammalian/metabolism , Stem Cells/metabolism , Animals , Antigens, Differentiation/biosynthesis , Cell Line , Embryo, Mammalian/cytology , Mice , Stem Cells/cytology
18.
Tissue Eng ; 12(4): 867-75, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16674299

ABSTRACT

The pluripotency of embryonic stem cells (ESC) is offering new opportunities in tissue engineering and cell therapy. We have shown previously that alveolar epithelial cells, specifically type II pneumocytes, can be derived from murine ESC and hypothesized that a similar protocol could be used successfully on human ESC. Undifferentiated human ESC were induced to form embryoid bodies that were transferred into adherent culture conditions and grown in a medium designed for the maintenance of mature small airway epithelium. On inverted microscopy, the generated cells showed the cobblestone-like morphology of epithelium. The presence of surfactant protein C, a specific marker of type II pneumocytes, and its corresponding RNA were demonstrated by immunostaining and reverse transcription polymerase chain reaction, respectively. Electron microscopy revealed frequent cells with the typical ultrastructure of type II pneumocytes. This study provides evidence for in vitro induction of the differentiation from human ESC of alveolar type II cells, which have the potential for therapeutic use or construction of an in vitro model of human lung.


Subject(s)
Embryo, Mammalian/cytology , Epithelial Cells/cytology , Pulmonary Alveoli/cytology , Stem Cells/cytology , Tissue Engineering/methods , Animals , Biomarkers/metabolism , Cell Adhesion , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Line , Collagenases/pharmacology , Culture Media/chemistry , Culture Media/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/pharmacology , Fibroblasts/cytology , Humans , Mice , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/ultrastructure , Pulmonary Surfactants/metabolism , Recombinant Proteins/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...