Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 3293, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280197

ABSTRACT

Lissencephaly-1 (LIS1) is associated with neurodevelopmental diseases and is known to regulate the molecular motor cytoplasmic dynein activity. Here we show that LIS1 is essential for the viability of mouse embryonic stem cells (mESCs), and it governs the physical properties of these cells. LIS1 dosage substantially affects gene expression, and we uncovered an unexpected interaction of LIS1 with RNA and RNA-binding proteins, most prominently the Argonaute complex. We demonstrate that LIS1 overexpression partially rescued the extracellular matrix (ECM) expression and mechanosensitive genes conferring stiffness to Argonaute null mESCs. Collectively, our data transforms the current perspective on the roles of LIS1 in post-transcriptional regulation underlying development and mechanosensitive processes.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase , Argonaute Proteins , Embryonic Stem Cells , Microtubule-Associated Proteins , Animals , Mice , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Blastocyst/cytology , Blastocyst/metabolism , Cell Survival , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Microtubule-Associated Proteins/metabolism , Pluripotent Stem Cells , Protein Interaction Maps , Argonaute Proteins/metabolism
2.
Sensors (Basel) ; 22(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36146391

ABSTRACT

A protocol for successfully depositing [001] textured, 2−3 µm thick films of Al0.75Sc0.25N, is proposed. The procedure relies on the fact that sputtered Ti is [001]-textured α-phase (hcp). Diffusion of nitrogen ions into the α-Ti film during reactive sputtering of Al0.75,Sc0.25N likely forms a [111]-oriented TiN intermediate layer. The lattice mismatch of this very thin film with Al0.75Sc0.25N is ~3.7%, providing excellent conditions for epitaxial growth. In contrast to earlier reports, the Al0.75Sc0.25N films prepared in the current study are Al-terminated. Low growth stress (<100 MPa) allows films up to 3 µm thick to be deposited without loss of orientation or decrease in piezoelectric coefficient. An advantage of the proposed technique is that it is compatible with a variety of substrates commonly used for actuators or MEMS, as demonstrated here for both Si wafers and D263 borosilicate glass. Additionally, thicker films can potentially lead to increased piezoelectric stress/strain by supporting application of higher voltage, but without increase in the magnitude of the electric field.

3.
EMBO Rep ; 23(7): e54755, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35642585

ABSTRACT

Malaria is the most serious mosquito-borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub-populations. Seeking to identify EV subpopulations, we subject malaria-derived EVs to size-separation analysis, using asymmetric flow field-flow fractionation. Multi-technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement-system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine-learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.


Subject(s)
Extracellular Vesicles , Malaria , Parasites , Animals , Erythrocytes/parasitology , Extracellular Vesicles/metabolism , Humans , Plasmodium falciparum
4.
ACS Omega ; 7(51): 47747-47754, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36591209

ABSTRACT

The spontaneous gelation of poly(4-vinyl pyridine)/pyridine solution produces materials with conductive properties that are suitable for various energy conversion technologies. The gel is a thermoelectric material with a conductivity of 2.2-5.0 × 10-6 S m-1 and dielectric constant ε = 11.3. On the molecular scale, the gel contains various types of hydrogen bonding, which are formed via self-protonation of the pyridine side chains. Our measurements and calculations revealed that the gelation process produces bias-dependent polymer complexes: quasi-symmetric, strongly hydrogen-bonded species, and weakly bound protonated structures. Under an applied DC bias, the gelled complexes differ in their capacitance/conductive characteristics. In this work, we exploited the bias-responsive characteristics of poly(4-vinyl pyridine) gelled complexes to develop a prototype of a thermal energy harvesting device. The measured device efficiency is S = ΔV/ΔT = 0.18 mV/K within the temperature range of 296-360 K. Investigation of the mechanism underlying the conversion of thermal energy into electric charge showed that the heat-controlled proton diffusion (the Soret effect) produces thermogalvanic redox reactions of hydrogen ions on the anode. The charge can be stored in an external capacitor for heat energy harvesting. These results advance our understanding of the molecular mechanisms underlying thermal energy conversion in the poly(4-vinyl pyridine)/pyridine gel. A device prototype, enabling thermal energy harvesting, successfully demonstrates a simple path toward the development of inexpensive, low-energy thermoelectric generators.

5.
Polymers (Basel) ; 13(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34771407

ABSTRACT

Poly(L-lactic acid) (PLLA) is a biocompatible, biodegradable, and semi-crystalline polymer with numerous applications including food packaging, medical implants, stents, tissue engineering scaffolds, etc. Hydroxyapatite (HA) is the major component of natural bone. Conceptually, combining PLLA and HA could produce a bioceramic suitable for implants and bone repair. However, this nanocomposite suffers from poor mechanical behavior under tensile strain. In this study, films of PLLA and HA were prepared with small amounts of nontoxic WS2 nanotubes (INT-WS2). The structural aspects of the films were investigated via electron microscopy, X-ray diffraction, Raman microscopy, and infrared absorption spectroscopy. The mechanical properties were evaluated via tensile measurements, micro-hardness tests, and nanoindentation. The thermal properties were investigated via differential scanning calorimetry. The composite films exhibited improved mechanical and thermal properties compared to the films prepared from the PLLA and HA alone, which is advantageous for medical applications.

6.
ACS Nano ; 15(9): 14643-14652, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34516094

ABSTRACT

We demonstrate the solvent-free amorphous-to-cocrystalline transformations of nanoscale molecular films. Exposing amorphous films to vapors of a haloarene results in the formation of a cocrystalline coating. This transformation proceeds by gradual strengthening of halogen-bonding interactions as a result of the crystallization process. The gas-solid diffusion mechanism involves formation of an amorphous metastable phase prior to crystallization of the films. In situ optical microscopy shows mass transport during this process, which is confirmed by cross-section analysis of the final structures using focused ion beam milling combined with scanning electron microscopy. Nanomechanical measurements show that the rigidity of the amorphous films influences the crystallization process. This surface transformation results in molecular arrangements that are not readily obtained through other means. Cocrystals grown in solution crystallize in a monoclinic centrosymmetric space group, whereas the on-surface halogen-bonded assembly crystallizes into a noncentrosymmetric material with a bulk second-order nonlinear optical response.

7.
Beilstein J Nanotechnol ; 12: 878-901, 2021.
Article in English | MEDLINE | ID: mdl-34476169

ABSTRACT

Progress in computing capabilities has enhanced science in many ways. In recent years, various branches of machine learning have been the key facilitators in forging new paths, ranging from categorizing big data to instrumental control, from materials design through image analysis. Deep learning has the ability to identify abstract characteristics embedded within a data set, subsequently using that association to categorize, identify, and isolate subsets of the data. Scanning probe microscopy measures multimodal surface properties, combining morphology with electronic, mechanical, and other characteristics. In this review, we focus on a subset of deep learning algorithms, that is, convolutional neural networks, and how it is transforming the acquisition and analysis of scanning probe data.

8.
Adv Sci (Weinh) ; 8(18): e2101773, 2021 09.
Article in English | MEDLINE | ID: mdl-34292678

ABSTRACT

It is established that electron transmission through chiral molecules depends on the electron's spin. This phenomenon, termed the chiral-induced spin selectivity (CISS), effect has been observed in chiral molecules, supramolecular structures, polymers, and metal-organic films. Which spin is preferred in the transmission depends on the handedness of the system and the tunneling direction of the electrons. Molecular motors based on overcrowded alkenes show multiple inversions of helical chirality under light irradiation and thermal relaxation. The authors found here multistate switching of spin selectivity in electron transfer through first generation molecular motors based on the four accessible distinct helical configurations, measured by magnetic-conductive atomic force microscopy. It is shown that the helical state dictates the molecular organization on the surface. The efficient spin polarization observed in the photostationary state of the right-handed motor coupled with the modulation of spin selectivity through the controlled sequence of helical states, opens opportunities to tune spin selectivity on-demand with high spatio-temporal precision. An energetic analysis correlates the spin injection barrier with the extent of spin polarization.

9.
Angew Chem Int Ed Engl ; 60(33): 18256-18264, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34115416

ABSTRACT

We demonstrate here a unique metallo-organic material where the appearance and the internal crystal structure are in contradiction. The egg-shaped (ovoid) crystals have a brain-like texture. Although these micro-sized crystals are monodispersed; like fingerprints their grainy surfaces are never exactly alike. Remarkably, our X-ray and electron diffraction studies unexpectedly revealed that these structures are single-crystals comprising a continuous coordination network of two differently shaped homochiral channels. By using the same building blocks under different reaction conditions, a rare series of crystals have been obtained that are uniquely rounded in their shape. In stark contrast to the brain-like crystals, these isostructural and monodispersed crystals have a comparatively smooth appearance. The sizes of these crystals vary by several orders of magnitude.

10.
ACS Appl Mater Interfaces ; 13(17): 20269-20276, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33886271

ABSTRACT

The technologically important frequency range for the application of electrostrictors and piezoelectrics is tens of Hz to tens of kHz. Sm3+- and Gd3+-doped ceria ceramics, excellent intermediate-temperature ion conductors, have been shown to exhibit very large electrostriction below 1 Hz. Why this is so is still not understood. While optimal design of ceria-based devices requires an in-depth understanding of their mechanical and electromechanical properties, systematic investigation of the influence of dopant size on frequency response is lacking. In this report, the mechanical and electromechanical properties of dense ceria ceramics doped with trivalent lanthanides (RE0.1Ce0.9O1.95, RE = Lu, Yb, Er, Gd, Sm, and Nd) were investigated. Young's, shear, and bulk moduli were obtained from ultrasound pulse echo measurements. Nanoindentation measurements revealed room-temperature creep in all samples as well as the dependence of Young's modulus on the unloading rate. Both are evidence for viscoelastic behavior, in this case anelasticity. For all samples, within the frequency range f = 0.15-150 Hz and electric field E ≤ 0.7 MV/m, the longitudinal electrostriction strain coefficient (|M33|) was 102 to 104-fold larger than expected for classical (Newnham) electrostrictors. However, electrostrictive strain in Er-, Gd-, Sm-, and Nd-doped ceramics exhibited marked frequency relaxation, with the Debye-type characteristic relaxation time τ ≤ 1 s, while for the smallest dopants-Lu and Yb-little change in electrostrictive strain was detected over the complete frequency range studied. We find that only the small, less-studied dopants continue to produce useable electrostrictive strain at the higher frequencies. We suggest that this striking difference in frequency response may be explained by postulating that introduction of a dopant induces two types of polarizable elastic dipoles and that the dopant size determines which of the two will be dominant.

11.
Nat Commun ; 12(1): 1172, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608523

ABSTRACT

Mature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S). The EV-20S proteasomes modulate the mechanical properties of naïve human RBCs by remodeling their cytoskeletal network. Furthermore, we identify four degradation targets of the secreted 20S proteasome, the phosphorylated cytoskeletal proteins ß-adducin, ankyrin-1, dematin and Epb4.1. Overall, our findings reveal a previously unknown 20S proteasome secretion mechanism employed by the human malaria parasite, which primes RBCs for parasite invasion by altering membrane stiffness, to facilitate malaria parasite growth.


Subject(s)
Biological Transport/physiology , Erythrocytes/metabolism , Host-Parasite Interactions/physiology , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Proteasome Endopeptidase Complex/metabolism , Cytoskeleton/metabolism , Erythrocytes/cytology , Erythrocytes/parasitology , Humans , Malaria, Falciparum/parasitology , Membrane Proteins/metabolism , Phosphorylation , Plasmodium falciparum/growth & development , Proteomics
12.
Beilstein J Org Chem ; 17: 42-51, 2021.
Article in English | MEDLINE | ID: mdl-33488830

ABSTRACT

The facile fabrication of free-floating organic nanocrystals (ONCs) was achieved via the kinetically controlled self-assembly of simple perylene diimide building blocks in aqueous medium. The ONCs have a thin rectangular shape, with an aspect ratio that is controlled by the content of the organic cosolvent (THF). The nanocrystals were characterized in solution by cryogenic transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering. The ONCs retain their structure upon drying, as was evidenced by TEM and atom force microscopy. Photophysical studies, including femtosecond transient absorption spectroscopy, revealed a distinct influence of the ONC morphology on their photonic properties (excitation energy transfer was observed only in the high-aspect ONCs). Convenient control over the structure and function of organic nanocrystals can enhance their utility in new and developed technologies.

13.
Commun Chem ; 4(1): 62, 2021 May 11.
Article in English | MEDLINE | ID: mdl-36697777

ABSTRACT

The process of amyloid nanofibril formation has broad implications including the generation of the strongest natural materials, namely silk fibers, and their major contribution to the progression of many degenerative diseases. The key question that remains unanswered is whether the amyloidogenic nature, which includes the characteristic H-bonded ß-sheet structure and physical characteristics of protein assemblies, can be modified via controlled intervention of the molecular interactions. Here we show that tailored changes in molecular interactions, specifically in the H-bonded network, do not affect the nature of amyloidogenic fibrillation, and even have minimal effect on the initial nucleation events of self-assembly. However, they do trigger changes in networks at a higher hierarchical level, namely enhanced 2D packaging which is rationalized by the 3D hierarchy of ß-sheet assembly, leading to variations in fibril morphology, structural composition and, remarkably, nanomechanical properties. These results pave the way to a better understanding of the role of molecular interactions in sculpting the structural and physical properties of protein supramolecular constructs.

14.
Environ Sci Technol ; 54(19): 11827-11837, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32870663

ABSTRACT

Transformations of biomass burning brown carbon aerosols (BB-BrC) over their diurnal lifecycle are currently not well studied. In this study, the aging of BB tar proxy aerosols processed by NO3• under dark conditions followed by the photochemical OH• reaction and photolysis were investigated in tandem flow reactors. The results show that O3 oxidation in the dark diminishes light absorption of wood tar aerosols, resulting in higher particle single-scattering albedo (SSA). NO3• reactions augment the mass absorption coefficient (MAC) of the aerosols by a factor of 2-3 by forming secondary chromophores, such as nitroaromatic compounds (NACs) and organonitrates. Subsequent OH• oxidation and direct photolysis both decompose the organic nitrates (ONs, representing bulk functionalities of NACs and organonitrates) in the NO3•-aged wood tar aerosols, thus decreasing particle absorption. Moreover, NACs degrade faster than organonitrates by photochemical aging. The NO3•-aged wood tar aerosols are more susceptible to photolysis than to OH• reactions. The photolysis lifetimes for the ONs and for the absorbance of the NO3•-aged aerosols are on the order of hours under typical solar irradiation, while the absorption and ON lifetimes toward OH• oxidation are substantially longer. Overall, nighttime aging via NO3• reactions increases the light absorption of wood tar aerosols and shortens their absorption lifetime under daytime conditions.


Subject(s)
Air Pollutants , Carbon , Aerosols/analysis , Air Pollutants/analysis , Biomass , Carbon/analysis , Laboratories , Photolysis
15.
J Am Chem Soc ; 142(33): 14210-14221, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32650634

ABSTRACT

We demonstrate the formation of uniform and oriented metal-organic frameworks using a combination of anion effects and surface chemistry. Subtle but significant morphological changes result from the nature of the coordinative counteranion of the following metal salts: NiX2 with X = Br-, Cl-, NO3-, and OAc-. Crystals could be obtained in solution or by template surface growth. The latter results in truncated crystals that resemble a half structure of the solution-grown ones. The oriented surface-bound metal-organic frameworks (sMOFs) are obtained via a one-step solvothermal approach rather than in a layer-by-layer approach. The MOFs are grown on Si/SiOx substrates modified with an organic monolayer or on glass substrates covered with a transparent conductive oxide (TCO). Regardless of the different morphologies, the crystallographic packing is nearly identical and is not affected by the type of anion or by solution versus the surface chemistry. A propeller-type arrangement of the nonchiral ligands around the metal center affords a chiral structure with two geometrically different helical channels in a 2:1 ratio with the same handedness. To demonstrate the accessibility and porosity of the macroscopically oriented channels, a chromophore (resorufin sodium salt) was successfully embedded into the channels of the crystals by diffusion from solution, resulting in fluorescent crystals. These "colored" crystals displayed polarized emission (red) with a high polarization ratio because of the alignment of these dyes imposed by the crystallographic structure. A second-harmonic generation (SHG) study revealed Kleinman symmetry-forbidden nonlinear optical properties. These surface-bound and oriented SHG-active MOFs have the potential for use as single nonlinear optical (NLO) devices.

16.
J Phys Chem Lett ; 11(1): 144-151, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31821001

ABSTRACT

Solid-state electronic transport (ETp) via the electron-transfer copper protein azurin (Az) was measured in Au/Az/Au junction configurations down to 4 K, the lowest temperature for solid-state protein-based junctions. Not only does lowering the temperature help when observing fine features of electronic transport, but it also limits possible electron transport mechanisms. Practically, wire-bonded devices-on-chip, carrying Az-based microscopic junctions, were measured in liquid He, minimizing temperature gradients across the samples. Much smaller junctions, in conducting-probe atomic force microscopy measurements, served, between room temperature and the protein's denaturation temperature (∼323 K), to check that conductance behavior is independent of device configuration or contact nature and thus is a property of the protein itself. Temperature-independent currents were observed from ∼320 to 4 K. The experimental results were fitted to a single-level Landauer model to extract effective energy barrier and electrode-molecule coupling strength values and to compare data sets. Our results strongly support that quantum tunneling, rather than hopping, dominates ETp via Az.

17.
Acta Biomater ; 94: 565-573, 2019 08.
Article in English | MEDLINE | ID: mdl-31252173

ABSTRACT

Since scorpions exist almost all over the world, some expected body differences exist among the species: undoubtedly, the most evident is the shape and size of their pincers or chelae. The scorpion chela is a multifunctional body component (e.g. attack/defense, mating and protection from the environment) that leads to the development of different stresses in the cuticle. How such stresses in the cuticle are accommodated by different chelae shape and size is largely unknown. Here we provide new comparative data on the hierarchical structure and mechanical properties of the chela cuticle in two scorpion species: Scorpio Maurus Palmatus (SP) that has a large chela and Buthus Occitanus Israelis (BO), with a slender chela. We found that the SP exocuticle is composed of four different sublayers whereas the BO exocuticle displays only two sublayers. These structures are different from the exocuticle morphologies in crustaceans, where the Bouligand morphology is present throughout the entire layer. Moreover, the scorpion chela cuticle presents an exclusive structural layer made of unidirectional fibers arranged vertically towards the normal direction of the cuticle. Nanoindentation measurements were performed under dry conditions on transversal and longitudinal planes to evaluate the stiffness and hardness of the different chela cuticle layers in both scorpions. The chela cuticle structure is a key factor towards the decision of the scorpion whether to choose to sting or use the chela for other mechanical functions. STATEMENT OF SIGNIFICANCE: Many arthropods such as lobsters, crabs, stomatopods, isopods, and spiders have been the subject of research in recent years, and their hierarchical structure and mechanical properties extensively investigated. Yet, except for a limited number of pre-1980 publications, comparatively little work has been devoted to the terrestrial scorpion. The scorpion chela is a multifunctional part of the body (e.g. attack/defense, mating and protection from the environment) that involves the development of various stresses in the cuticle. How these stresses in the chela cuticle are managed by different chelae shape and size is still unknown. The lack of a single study that integrates morphological characterization of the entire hierarchical structure of the scorpion chela cuticle, and local mechanical properties, significantly affects the scientific knowledge regarding important structural approaches that can be used by nature to maximize functionality.


Subject(s)
Animal Shells/chemistry , Scorpions/chemistry , Animals
18.
Cell Microbiol ; 21(7): e13021, 2019 07.
Article in English | MEDLINE | ID: mdl-30835870

ABSTRACT

Protozoan pathogens secrete nanosized particles called extracellular vesicles (EVs) to facilitate their survival and chronic infection. Here, we show the inhibition by Plasmodium berghei NK65 blood stage-derived EVs of the proliferative response of CD4+ T cells in response to antigen presentation. Importantly, these results were confirmed in vivo by the capacity of EVs to diminish the ovalbumin-specific delayed type hypersensitivity response. We identified two proteins associated with EVs, the histamine releasing factor (HRF) and the elongation factor 1α (EF-1α) that were found to have immunosuppressive activities. Interestingly, in contrast to WT parasites, EVs from genetically HRF- and EF-1α-deficient parasites failed to inhibit T cell responses in vitro and in vivo. At the level of T cells, we demonstrated that EVs from WT parasites dephosphorylate key molecules (PLCγ1, Akt, and ERK) of the T cell receptor signalling cascade. Remarkably, immunisation with EF-1α alone or in combination with HRF conferred a long-lasting antiparasite protection and immune memory. In conclusion, we identified a new mechanism by which P. berghei-derived EVs exert their immunosuppressive functions by altering T cell responses. The identification of two highly conserved immune suppressive factors offers new conceptual strategies to overcome EV-mediated immune suppression in malaria-infected individuals.


Subject(s)
Biomarkers, Tumor/genetics , Extracellular Vesicles/immunology , Malaria/genetics , Peptide Elongation Factor 1/genetics , Animals , Antigen Presentation/immunology , Antigens/genetics , Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/parasitology , Cell Proliferation/genetics , Extracellular Vesicles/genetics , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Malaria/parasitology , Malaria/pathology , Plasmodium berghei/genetics , Plasmodium berghei/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/parasitology , Tumor Protein, Translationally-Controlled 1
19.
Nanoscale ; 10(46): 21712-21720, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30431054

ABSTRACT

The incorporation of proteins as functional components in electronic junctions has received much interest recently due to their diverse bio-chemical and physical properties. However, information regarding the energies of the frontier orbitals involved in their electron transport (ETp) has remained elusive. Here we employ a new method to quantitatively determine the energy position of the molecular orbital, nearest to the Fermi level (EF) of the electrode, in the electron transfer protein Azurin. The importance of the Cu(ii) redox center of Azurin is demonstrated by measuring gate-controlled conductance switching which is absent if Azurin's copper ions are removed. Comparing different electrode materials, a higher conductance and a lower gate-induced current onset is observed for the material with smaller work function, indicating that ETp via Azurin is LUMO-mediated. We use the difference in work function to calibrate the difference in gate-induced current onset for the two electrode materials, to a specific energy level shift and find that ETp via Azurin is near resonance. Our results provide a basis for mapping and studying the role of energy level positions in (bio)molecular junctions.


Subject(s)
Azurin/chemistry , Transistors, Electronic , Copper/chemistry , Electrodes , Electron Transport , Gold/chemistry , Oxidation-Reduction , Quantum Theory
20.
Nat Phys ; 14(5): 515-522, 2018 May.
Article in English | MEDLINE | ID: mdl-29760764

ABSTRACT

Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a micro-fabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in in vivo, it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...