Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Methods Mol Biol ; 2426: 315-331, 2023.
Article in English | MEDLINE | ID: mdl-36308695

ABSTRACT

Adaptive PENSE is a method that can be used to build models for predicting clinical outcomes from a small subset of a potentially large number of candidate proteins. Adaptive PENSE is designed to give reliable results under two common challenges often encountered in these kinds of studies: (1) the number of samples with known clinical outcome and proteomic data is small, while the number of candidate proteins is large and/or (2) proteomic data and the clinical outcome measurements suffer from data quality issues in a small fraction of samples. Even in the presence of these challenges, adaptive PENSE reliably identifies proteins relevant for prediction and estimates accurate predictive models. Adaptive PENSE is designed to be resilient to data quality issues in up to 50% of samples. Almost half of the samples could have aberrant values in the measured protein levels and clinical outcome values without causing severe detrimental effects to the estimated predictive model. The method is implemented as an R package and supports the user in the model selection process by automating most steps and providing diagnostic visualizations to guide the user. Users can choose among several predictive models to select the model with high prediction accuracy and an appropriate number of selected proteins.


Subject(s)
Proteins , Proteomics , Proteins/genetics , Research Design
2.
Stat Med ; 41(18): 3511-3526, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35567357

ABSTRACT

The continuous evolution of metabolomics over the past two decades has stimulated the search for metabolic biomarkers of many diseases. Metabolomic data measured from urinary samples can provide rich information of the biological events triggered by organ rejection in pediatric kidney transplant recipients. With additional validation, metabolic markers can be used to build clinically useful diagnostic tools. However, there are many methodological steps ranging from data processing to modeling that can influence the performance of the resulting metabolomic classifiers. In this study we focus on the comparison of various classification methods that can handle the complex structure of metabolomic data, including regularized classifiers, partial least squares discriminant analysis, and nonlinear classification models. We also examine the effectiveness of a physiological normalization technique widely used in the clinical and biochemical literature but not extensively analyzed and compared in urine metabolomic studies. While the main objective of this work is to interrogate metabolomic data of pediatric kidney transplant recipients to improve the diagnosis of T cell-mediated rejection (TCMR), we also analyze three independent datasets from other disease conditions to investigate the generalizability of our findings.


Subject(s)
Kidney Transplantation , Biomarkers/urine , Child , Discriminant Analysis , Humans , Least-Squares Analysis , Metabolomics/methods
3.
EBioMedicine ; 75: 103776, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35027333

ABSTRACT

BACKGROUND: Inter-individual variability during sepsis limits appropriate triage of patients. Identifying, at first clinical presentation, gene expression signatures that predict subsequent severity will allow clinicians to identify the most at-risk groups of patients and enable appropriate antibiotic use. METHODS: Blood RNA-Seq and clinical data were collected from 348 patients in four emergency rooms (ER) and one intensive-care-unit (ICU), and 44 healthy controls. Gene expression profiles were analyzed using machine learning and data mining to identify clinically relevant gene signatures reflecting disease severity, organ dysfunction, mortality, and specific endotypes/mechanisms. FINDINGS: Gene expression signatures were obtained that predicted severity/organ dysfunction and mortality in both ER and ICU patients with accuracy/AUC of 77-80%. Network analysis revealed these signatures formed a coherent biological program, with specific but overlapping mechanisms/pathways. Given the heterogeneity of sepsis, we asked if patients could be assorted into discrete groups with distinct mechanisms (endotypes) and varying severity. Patients with early sepsis could be stratified into five distinct and novel mechanistic endotypes, named Neutrophilic-Suppressive/NPS, Inflammatory/INF, Innate-Host-Defense/IHD, Interferon/IFN, and Adaptive/ADA, each based on ∼200 unique gene expression differences, and distinct pathways/mechanisms (e.g., IL6/STAT3 in NPS). Endotypes had varying overall severity with two severe (NPS/INF) and one relatively benign (ADA) groupings, consistent with reanalysis of previous endotype studies. A 40 gene-classification tool (accuracy=96%) and several gene-pairs (accuracy=89-97%) accurately predicted endotype status in both ER and ICU validation cohorts. INTERPRETATION: The severity and endotype signatures indicate that distinct immune signatures precede the onset of severe sepsis and lethality, providing a method to triage early sepsis patients.


Subject(s)
Sepsis , Critical Care , Humans , Intensive Care Units , Sepsis/diagnosis , Sepsis/genetics , Severity of Illness Index , Transcriptome
4.
Nat Med ; 26(4): 577-588, 2020 04.
Article in English | MEDLINE | ID: mdl-32094924

ABSTRACT

Transmembrane protein 30A (TMEM30A) maintains the asymmetric distribution of phosphatidylserine, an integral component of the cell membrane and 'eat-me' signal recognized by macrophages. Integrative genomic and transcriptomic analysis of diffuse large B-cell lymphoma (DLBCL) from the British Columbia population-based registry uncovered recurrent biallelic TMEM30A loss-of-function mutations, which were associated with a favorable outcome and uniquely observed in DLBCL. Using TMEM30A-knockout systems, increased accumulation of chemotherapy drugs was observed in TMEM30A-knockout cell lines and TMEM30A-mutated primary cells, explaining the improved treatment outcome. Furthermore, we found increased tumor-associated macrophages and an enhanced effect of anti-CD47 blockade limiting tumor growth in TMEM30A-knockout models. By contrast, we show that TMEM30A loss-of-function increases B-cell signaling following antigen stimulation-a mechanism conferring selective advantage during B-cell lymphoma development. Our data highlight a multifaceted role for TMEM30A in B-cell lymphomagenesis, and characterize intrinsic and extrinsic vulnerabilities of cancer cells that can be therapeutically exploited.


Subject(s)
Cell Transformation, Neoplastic/genetics , Loss of Function Mutation , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/therapy , Membrane Proteins/genetics , Molecular Targeted Therapy , Adolescent , Adult , Aged , Aged, 80 and over , Animals , British Columbia/epidemiology , Cells, Cultured , Cohort Studies , Female , Genetic Predisposition to Disease , HEK293 Cells , Humans , Jurkat Cells , Loss of Function Mutation/genetics , Lymphoma, Large B-Cell, Diffuse/epidemiology , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Middle Aged , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Young Adult
5.
Proteomics Clin Appl ; 13(4): e1700111, 2019 07.
Article in English | MEDLINE | ID: mdl-30632678

ABSTRACT

PURPOSE: A highly-multiplexed LC-ESI-multiple reaction monitoring-MS-based assay is developed for the identification of coronary artery disease (CAD) biomarkers in human plasma. EXPERIMENTAL DESIGN: The assay is used to measure 107 stable isotope labeled peptide standards and native peptides from 64 putative biomarkers of cardiovascular diseases in tryptic digests of plasma from subjects with (n = 70) and without (n = 45) angiographic evidence of CAD and no subsequent cardiovascular mortality during follow-up. RESULTS: Extensive computational and statistical analysis reveals six plasma proteins associated with CAD, namely apolipoprotein CII, C reactive protein, CD5 antigen-like, fibronectin, inter alpha trypsin inhibitor heavy chain H1, and protein S. The identified proteins are combined into a LASSO-logistic score with high classification performance (cross-validated area under the curve = 0.74). When combined with a separate score computed from markers currently used in the clinic with similar performance, the area under the receiver operating curve increases to 0.84. Similar results are observed in an independent set of subjects (n = 87). CONCLUSIONS AND CLINICAL RELEVANCE: If externally validated, the assay and identified biomarkers can improve CAD risk stratification.


Subject(s)
Blood Proteins/metabolism , Coronary Artery Disease/blood , Peptides/blood , Proteomics , Chromatography, Liquid , Female , Follow-Up Studies , Humans , Male , Mass Spectrometry , Middle Aged
6.
Am J Respir Crit Care Med ; 197(4): 450-462, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29087730

ABSTRACT

RATIONALE: The allergen inhalation challenge is used in clinical trials to test the efficacy of new treatments in attenuating the late-phase asthmatic response (LAR) and associated airway inflammation in subjects with allergic asthma. However, not all subjects with allergic asthma develop the LAR after allergen inhalation. Blood-based transcriptional biomarkers that can identify such individuals may help in subject recruitment for clinical trials as well as provide novel molecular insights. OBJECTIVES: To identify blood-based transcriptional biomarker panels that can predict an individual's response to allergen inhalation challenge. METHODS: We applied RNA sequencing to total RNA from whole blood (n = 36) collected before and after allergen challenge and generated both genome-guided and de novo datasets: genes, gene-isoforms (University of California, Santa Cruz, UCSC Genome Browser), Ensembl, and Trinity. Candidate biomarker panels were validated using the NanoString platform in an independent cohort of 33 subjects. MEASUREMENTS AND MAIN RESULTS: The Trinity biomarker panel consisting of known and novel biomarker transcripts had an area under the receiver operating characteristic curve of greater than 0.70 in both the discovery and validation cohorts. The Trinity biomarker panel was useful in predicting the response of subjects that elicited different responses (accuracy between 0.65 and 0.71) and subjects that elicit a dual response (accuracy between 0.70 and 0.75) upon repeated allergen inhalation challenges. CONCLUSIONS: Interestingly, the biomarker panel containing novel transcripts successfully validated compared with panels with known, well-characterized genes. These biomarker-blood tests may be used to identify subjects with asthma who develop the LAR, and may also represent members of novel molecular mechanisms that can be targeted for therapy.


Subject(s)
Asthma/blood , Asthma/diagnosis , Bronchial Provocation Tests/methods , Gene Expression Profiling/methods , Adult , Asthma/genetics , Biomarkers/blood , Female , Humans , Male , Predictive Value of Tests , Young Adult
7.
PLoS One ; 12(5): e0177569, 2017.
Article in English | MEDLINE | ID: mdl-28562641

ABSTRACT

The quantitation of proteins using shotgun proteomics has gained popularity in the last decades, simplifying sample handling procedures, removing extensive protein separation steps and achieving a relatively high throughput readout. The process starts with the digestion of the protein mixture into peptides, which are then separated by liquid chromatography and sequenced by tandem mass spectrometry (MS/MS). At the end of the workflow, recovering the identity of the proteins originally present in the sample is often a difficult and ambiguous process, because more than one protein identifier may match a set of peptides identified from the MS/MS spectra. To address this identification problem, many MS/MS data processing software tools combine all plausible protein identifiers matching a common set of peptides into a protein group. However, this solution introduces new challenges in studies with multiple experimental runs, which can be characterized by three main factors: i) protein groups' identifiers are local, i.e., they vary run to run, ii) the composition of each group may change across runs, and iii) the supporting evidence of proteins within each group may also change across runs. Since in general there is no conclusive evidence about the absence of proteins in the groups, protein groups need to be linked across different runs in subsequent statistical analyses. We propose an algorithm, called Protein Group Code Algorithm (PGCA), to link groups from multiple experimental runs by forming global protein groups from connected local groups. The algorithm is computationally inexpensive and enables the connection and analysis of lists of protein groups across runs needed in biomarkers studies. We illustrate the identification problem and the stability of the PGCA mapping using 65 iTRAQ experimental runs. Further, we use two biomarker studies to show how PGCA enables the discovery of relevant candidate protein group markers with similar but non-identical compositions in different runs.


Subject(s)
Algorithms , Proteins/chemistry , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Biomarkers , Heart Transplantation , Humans , Muscular Dystrophies/metabolism , Proteomics , Sequence Homology, Amino Acid
8.
J Proteomics ; 118: 2-11, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25753122

ABSTRACT

Multiple sclerosis (MS) is associated with chronic degeneration of the central nervous system and may cause permanent neurological problems and considerable disability. While its causes remain unclear, its extensive phenotypic variability makes its prognosis and treatment difficult. The identification of serum proteomic biomarkers of MS progression could further our understanding of the molecular mechanisms related to MS disease processes. In the current study, we used isobaric tagging for relative and absolute protein quantification (iTRAQ) methodology and advanced multivariate statistical analysis to quantify and identify potential serum biomarker proteins of MS progression. We identified a panel of 11 proteins and combined them into a classifier that best classified samples into the two disease groups. The estimated area under the receiver operating curve of this classifier was 0.88 (p-value=0.017), with 86% sensitivity and specificity. The identified proteins encompassed processes related to inflammation, opsonization, and complement activation. Results from this study are in particular valuable to design a targeted Multiple Reaction Monitoring mass spectrometry based (MRM-MS) assay to conduct an external validation in an independent and larger cohort of patients. Validated biomarkers may result in the development of a minimally-invasive tool to monitor MS progression and complement current clinical practices. BIOLOGICAL SIGNIFICANCE: A hallmark of multiple sclerosis is the unpredictable disease course (progression). There are currently no clinically useful biomarkers of MS disease progression; most work has focused on the analysis of CSF, which requires an invasive procedure. Here, we explore the potential of proteomics to identify panels of serum biomarkers of disease progression in MS. By comparing the protein signatures of two challenging to obtain, but well-defined, MS phenotypic groups at the extremes of progression (benign and aggressive cases of MS), we identified proteins that encompass processes related to inflammation, opsonization, and complement activation. Findings require validation, but are an important step on the pathway to clinically useful biomarker discovery. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.


Subject(s)
Blood Proteins/metabolism , Disease Progression , Multiple Sclerosis/blood , Proteome/metabolism , Proteomics , Adult , Biomarkers/blood , Female , Humans , Male
9.
Eur J Heart Fail ; 16(5): 551-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24574204

ABSTRACT

AIMS: Chronic heart failure is a costly epidemic that affects up to 2% of people in developed countries. The purpose of this study was to discover novel blood proteomic biomarker signatures of recovered heart function that could lead to more effective heart failure patient management by both primary care and specialty physicians. METHODS AND RESULTS: The discovery cohort included 41 heart transplant patients and 20 healthy individuals. Plasma levels of 138 proteins were detected in at least 75% of these subjects by iTRAQ mass spectrometry. Eighteen proteins were identified that had (i) differential levels between pre-transplant patients with end-stage heart failure and healthy individuals; and (ii) levels that returned to normal by 1 month post-transplant in patients with stable heart function after transplantation. Seventeen of the 18 markers were validated by multiple reaction monitoring mass spectrometry in a cohort of 39 heart failure patients treated with drug therapy, of which 30 had recovered heart function and 9 had not. This 17-protein biomarker panel had 93% sensitivity and 89% specificity, while the RAMP® NT-proBNP assay had the same specificity but 80% sensitivity. Performance further improved when the panel was combined with NT-proBNP, yielding a net reclassification index relative to NT-proBNP of 0.28. CONCLUSIONS: We have identified potential blood biomarkers of recovered heart function by harnessing data from transplant patients. These biomarkers can lead to the development of an inexpensive protein-based blood test that could be used by physicians to monitor response to therapy in heart failure, resulting in more personalized, front-line heart failure patient management.


Subject(s)
Blood Proteins , Cardiovascular Agents/therapeutic use , Heart Failure , Heart Transplantation/methods , Adult , Aged , Biomarkers/analysis , Biomarkers/blood , Blood Proteins/analysis , Blood Proteins/classification , Data Interpretation, Statistical , Drug Monitoring/methods , Female , Heart Failure/blood , Heart Failure/diagnosis , Heart Failure/drug therapy , Heart Failure/surgery , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/blood , Outcome Assessment, Health Care , Peptide Fragments/blood , Perioperative Care/methods , Recovery of Function/physiology , Research Design , Sensitivity and Specificity
10.
J Heart Lung Transplant ; 32(7): 723-33, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23796154

ABSTRACT

BACKGROUND: Coronary angiography remains the most widely used tool for routine screening and diagnosis of cardiac allograft vasculopathy (CAV), a major pathologic process that develops in 50% of cardiac transplant recipients beyond the first year after transplant. Given the invasiveness, expense, discomfort, and risk of complications associated with angiography, a minimally invasive alternative that is sensitive and specific would be highly desirable for monitoring CAV in patients. METHODS: Plasma proteomic analysis using isobaric tags for relative and absolute quantitation-matrix-assisted laser desorption ionization double time-of-flight mass spectrometry was carried out on samples from 40 cardiac transplant patients (10 CAV, 9 non-significant CAV, 21 possible CAV). Presence of CAV was defined as left anterior descending artery diameter stenosis ≥ 40% by digital angiography and quantitatively measured by blinded expert appraisal. Moderated t-test robust-linear models for microarray data were used to identify biomarkers that are significantly differentially expressed between patient samples with CAV and with non-significant CAV. A proteomic panel for diagnosis of CAV was generated using the Elastic Net classification method. RESULTS: We identified an 18-plasma protein biomarker classifier panel that was able to classify and differentiate patients with angiographically significant CAV from those without significant CAV, with an 80% sensitivity and 89% specificity, while providing insight into the possible underlying immune and non-alloimmune contributory mechanisms of CAV. CONCLUSION: Our results support of the potential utility of proteomic biomarker panels as a minimally invasive means to identify patients with significant, angiographically detectable coronary artery stenosis in the cardiac allograft, in the context of post-cardiac transplantation monitoring and screening for CAV. The potential biologic significance of the biomarkers identified may also help improve our understanding of CAV pathophysiology.


Subject(s)
Blood Proteins/analysis , Heart Transplantation/adverse effects , Vascular Diseases/blood , Vascular Diseases/etiology , Female , Humans , Male , Middle Aged , Proteomics , Transplantation, Homologous
11.
PLoS Comput Biol ; 9(4): e1002963, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23592955

ABSTRACT

Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end computational proteomic pipeline for biomarkers studies. At the discovery stage, the pipeline emphasizes different aspects of experimental design, appropriate statistical methodologies, and quality assessment of results. At the validation stage, the pipeline focuses on the migration of the results to a platform appropriate for external validation, and the development of a classifier score based on corroborated protein biomarkers. At the last stage towards clinical implementation, the main aims are to develop and validate an assay suitable for clinical deployment, and to calibrate the biomarker classifier using the developed assay. The proposed pipeline was applied to a biomarker study in cardiac transplantation aimed at developing a minimally invasive clinical test to monitor acute rejection. Starting with an untargeted screening of the human plasma proteome, five candidate biomarker proteins were identified. Rejection-regulated proteins reflect cellular and humoral immune responses, acute phase inflammatory pathways, and lipid metabolism biological processes. A multiplex multiple reaction monitoring mass-spectrometry (MRM-MS) assay was developed for the five candidate biomarkers and validated by enzyme-linked immune-sorbent (ELISA) and immunonephelometric assays (INA). A classifier score based on corroborated proteins demonstrated that the developed MRM-MS assay provides an appropriate methodology for an external validation, which is still in progress. Plasma proteomic biomarkers of acute cardiac rejection may offer a relevant post-transplant monitoring tool to effectively guide clinical care. The proposed computational pipeline is highly applicable to a wide range of biomarker proteomic studies.


Subject(s)
Biomarkers/analysis , Blood Proteins/analysis , Computational Biology/methods , Heart Transplantation , Proteomics/methods , Calibration , Cohort Studies , Enzyme-Linked Immunosorbent Assay , Graft Rejection , Heart Failure/therapy , Humans , Inflammation , Mass Spectrometry , Proteome/analysis
12.
J Heart Lung Transplant ; 32(2): 259-65, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23265908

ABSTRACT

BACKGROUND: Acute rejection in cardiac transplant patients remains a contributory factor to limited survival of implanted hearts. Currently, there are no biomarkers in clinical use that can predict, at the time of transplantation, the likelihood of post-transplant acute cellular rejection. Such a development would be of great value in personalizing immunosuppressive treatment. METHODS: Recipient age, donor age, cold ischemic time, warm ischemic time, panel-reactive antibody, gender mismatch, blood type mismatch and human leukocyte antigens (HLA-A, -B and -DR) mismatch between recipients and donors were tested in 53 heart transplant patients for their power to predict post-transplant acute cellular rejection. Donor transplant biopsy and recipient pre-transplant blood were also examined for the presence of genomic biomarkers in 7 rejection and 11 non-rejection patients, using non-targeted data mining techniques. RESULTS: The biomarker based on the 8 clinical variables had an area under the receiver operating characteristic curve (AUC) of 0.53. The pre-transplant recipient blood gene-based panel did not yield better performance, but the donor heart tissue gene-based panel had an AUC = 0.78. A combination of 25 probe sets from the transplant donor biopsy and 18 probe sets from the pre-transplant recipient whole blood had an AUC = 0.90. Biologic pathways implicated include VEGF- and EGFR-signaling, and MAPK. CONCLUSIONS: Based on this study, the best predictive biomarker panel contains genes from recipient whole blood and donor myocardial tissue. This panel provides clinically relevant prediction power and, if validated, may personalize immunosuppressive treatment and rejection monitoring.


Subject(s)
Gene Expression , Graft Rejection/epidemiology , Heart Transplantation/immunology , Adult , Biomarkers/analysis , Female , Humans , Male , Middle Aged , Predictive Value of Tests , ROC Curve , Risk Assessment , Sensitivity and Specificity
13.
Proteomics Clin Appl ; 6(9-10): 476-85, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22930592

ABSTRACT

PURPOSE: This proteomics study was designed to determine the utility of iTRAQ MALDI-TOF/TOF technology to compare plasma samples from carefully phenotyped mild, atopic asthma subjects undergoing allergen inhalation challenge. EXPERIMENTAL DESIGN: Eight adult subjects with mild, allergic asthma (four early responders (ERs) and four dual responders (DRs)) participated in the allergen inhalation challenge. Blood samples were collected prior to and 2 h after the inhalation challenge. Sixteen plasma samples (two per subject), technical replicates, and pooled controls were analyzed using iTRAQ. Technical validation was performed using LC-MRM/MS. Moderated robust regression was used to determine differentially expressed proteins. RESULTS: Although this study did not show significant differences between pre- and post-challenge samples, discriminant analysis indicated that certain proteins responded differentially to allergen challenge with respect to responder type. At pre-challenge, fibronectin was significantly elevated in DRs compared to ERs and remained significant in the multiple reaction monitoring validation. CONCLUSIONS AND CLINICAL RELEVANCE: This proof of principle demonstration has shown that iTRAQ can uncover differences in the human plasma proteome between two endotypes of asthma and merits further application of iTRAQ to larger cohorts of asthma and other respiratory diseases.


Subject(s)
Asthma/blood , Proteomics , Administration, Inhalation , Adult , Allergens/immunology , Asthma/immunology , Asthma/pathology , Chromatography, High Pressure Liquid , Discriminant Analysis , Female , Fibronectins/blood , Humans , Male , Middle Aged , Proteome/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Young Adult
15.
J Proteomics ; 75(12): 3514-28, 2012 Jun 27.
Article in English | MEDLINE | ID: mdl-22146476

ABSTRACT

In this study we demonstrate the use of a multiplexed MRM-based assay to distinguish among normal (NL) and iron-metabolism disorder mouse models, particularly, iron-deficiency anemia (IDA), inflammation (INFL), and inflammation and anemia (INFL+IDA). Our initial panel of potential biomarkers was based on the analysis of 14 proteins expressed by candidate genes involved in iron transport and metabolism. Based on this study, we were able to identify a panel of 8 biomarker proteins: apolipoprotein A4 (APO4), transferrin, transferrin receptor 1, ceruloplasmin, haptoglobin, lactoferrin, hemopexin, and matrix metalloproteinase-8 (MMP8) that clearly distinguish among the normal and disease models. Within this set of proteins, transferrin showed the best individual classification accuracy over all samples (72%) and within the NL group (94%). Compared to the best single-protein biomarker, transferrin, the use of the composite 8-protein biomarker panel improved the classification accuracy from 94% to 100% in the NL group, from 50% to 72% in the INFL group, from 66% to 96% in the IDA group, and from 79% to 83% in the INFL+IDA group. Based on these findings, validation of the utility of this potentially important biomarker panel in human samples in an effort to differentiate IDA, inflammation, and combinations thereof, is now warranted. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.


Subject(s)
Anemia, Iron-Deficiency/blood , Anemia, Iron-Deficiency/diagnosis , Anemia/blood , Anemia/diagnosis , Blood Proteins/analysis , Inflammation/complications , Mass Spectrometry/methods , Anemia/etiology , Animals , Biomarkers/blood , Blood Proteins/chemistry , Diagnosis, Differential , Female , Inflammation/blood , Inflammation/diagnosis , Mice , Mice, Inbred C57BL , Peptide Mapping/methods , Reproducibility of Results , Sensitivity and Specificity
16.
J Card Fail ; 17(10): 867-74, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21962426

ABSTRACT

BACKGROUND: To date, gene expression studies related to chronic heart failure (CHF) have mainly involved microarray analysis of myocardial tissues. The potential utility of blood to infer the etiology, pathogenesis, and course of CHF remains unclear. Further, the use of proteomic and metabolomic platforms for molecular profiling of CHF is relatively unexplored. METHODS: Microarray genomic, iTRAQ proteomic, and nuclear magnetic resonance metabolomic analyses were carried out on blood samples from 29 end-stage CHF patients (16 ischemic heart disease [IHD], 13 nonischemic cardiomyopathy [NICM]), and 20 normal cardiac function (NCF) controls. Robust statistical tests and bioinformatical tools were applied to identify and compare the molecular signatures among these subject groups. RESULTS: No genes or proteins, and only two metabolites, were differentially expressed between IHD and NICM patients at end stage. However, CHF versus NCF comparison revealed differential expression of 7,426 probe sets, 71 proteins, and 8 metabolites. Functional enrichment analyses of the CHF versus NCF results revealed several in-common biological themes and potential mechanisms underlying advanced heart failure. CONCLUSION: Multiple "-omic" analyses support the convergence of dramatic changes in molecular processes underlying IHD and NICM at end stage.


Subject(s)
Cardiomyopathies/genetics , Heart Failure/genetics , Adult , Aged , Cardiomyopathies/blood , Case-Control Studies , Female , Gene Expression Profiling , Heart Failure/blood , Humans , Male , Middle Aged , Proteomics , Severity of Illness Index
18.
Transplantation ; 90(12): 1388-93, 2010 Dec 27.
Article in English | MEDLINE | ID: mdl-21076371

ABSTRACT

BACKGROUND: Acute rejection is still a significant barrier to long-term survival of the allograft. Current acute rejection diagnostic methods are not specific enough or are invasive. There have been a number of studies that have explored the blood or the biopsy to discover genomic biomarkers of acute rejection; however, none of the studies to date have used both. METHODS: We analyzed endomyocardial biopsy tissue and whole blood-derived messenger RNA from 11 acute rejection and 20 nonrejection patients using Affymetrix Human Genome U133 Plus 2.0 chips. We used a novel approach and gained insight into the biology of rejection based on gene expression in the biopsy, and applied this knowledge to the blood analysis to identify novel blood biomarkers. RESULTS: We identified probesets that are differentially expressed between acute rejection and nonrejection patients in the biopsy and blood, and developed three biomarker panels: (1) based on biopsy-only (area under the curve=0.85), (2) based on biopsy-targeted whole blood (area under the curve=0.83), and (3) based on whole blood-only (area under the curve=0.60) analyses. CONCLUSIONS: Most of the probesets replicated between biopsy and blood are regulated in opposite direction between the two sources of information. We also observed that the biopsy-targeted blood biomarker discovery approach can improve performance of the biomarker panel. The biomarker panel developed using this targeted approach is able to diagnose acute cardiac allograft rejection almost as well as the biopsy-only based biomarker panel.


Subject(s)
Biomarkers/blood , Heart Transplantation/pathology , Acute Disease , Adult , Aged , Area Under Curve , Biopsy , Cardiomyopathies/surgery , Female , Humans , Male , Middle Aged , Myocardial Ischemia/surgery , Oligonucleotide Array Sequence Analysis , RNA, Messenger/blood , RNA, Messenger/genetics , Transplantation, Homologous/pathology
19.
Bioinformatics ; 23(23): 3162-9, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17933854

ABSTRACT

MOTIVATION: The process of producing microarray data involves multiple steps, some of which may suffer from technical problems and seriously damage the quality of the data. Thus, it is essential to identify those arrays with low quality. This article addresses two questions: (1) how to assess the quality of a microarray dataset using the measures provided in quality control (QC) reports; (2) how to identify possible sources of the quality problems. RESULTS: We propose a novel multivariate approach to evaluate the quality of an array that examines the 'Mahalanobis distance' of its quality attributes from those of other arrays. Thus, we call it Mahalanobis Distance Quality Control (MDQC) and examine different approaches of this method. MDQC flags problematic arrays based on the idea of outlier detection, i.e. it flags those arrays whose quality attributes jointly depart from those of the bulk of the data. Using two case studies, we show that a multivariate analysis gives substantially richer information than analyzing each parameter of the QC report in isolation. Moreover, once the QC report is produced, our quality assessment method is computationally inexpensive and the results can be easily visualized and interpreted. Finally, we show that computing these distances on subsets of the quality measures in the report may increase the method's ability to detect unusual arrays and helps to identify possible reasons of the quality problems. AVAILABILITY: The library to implement MDQC will soon be available from Bioconductor.


Subject(s)
Algorithms , Data Interpretation, Statistical , Databases, Genetic , Gene Expression Profiling/methods , Information Storage and Retrieval/methods , Oligonucleotide Array Sequence Analysis/methods , Multivariate Analysis , Quality Control , Reproducibility of Results , Sensitivity and Specificity
20.
Int J Parasitol ; 37(10): 1077-86, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17574557

ABSTRACT

The completion of the genomic sequences of many protozoan pathogens of humans, including species of Leishmania, Trypanosoma and Plasmodium, provide new approaches to study the pattern of gene expression during differentiation and development. Leishmania are a major public health risk in many countries and cause a wide spectrum of clinical disease referred to as leishmaniasis. The Leishmania life cycle consists of two morphologically distinct stages: intracellular amastigotes that reside in the phagolysosome of mammalian macrophages, and extracellular promastigotes that reside within the gut of the sandfly vector. DNA microarray analysis is a powerful method to study global gene expression in terms of quantitation of mRNA levels. This review discusses the application of DNA microarray technology to study the pattern of global gene expression of Leishmania promastigote and amastigote life stages. Results from several studies show that, overall, there is a surprisingly low level of differentially expressed genes, ranging from 0.2% to 5% of total genes, between the amastigote and promastigote life stages. Thus, the Leishmania genome can be considered to be constitutively expressed with a limited number of genes showing stage-specific expression. Comparative genomic analyses of gene expression levels between Leishmania major and Leishmania mexicana show that the majority of differentially expressed genes between amastigotes and promastigotes are species specific with relatively few differentially expressed genes in common between these two Leishmania species. Quantitative proteomic analysis of Leishmania relative protein expression shows there is a weak correlation to gene expression. Therefore, Leishmania protein expression levels are likely regulated at the level of translation or by post transcriptional mechanisms, and differential protein modifications may be more important in development than the regulation of gene expression.


Subject(s)
Gene Expression Profiling , Leishmania/genetics , Protozoan Proteins/genetics , Animals , Genome, Protozoan , Leishmania/metabolism , Protozoan Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...