Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
MethodsX ; 10: 101957, 2023.
Article in English | MEDLINE | ID: mdl-36684469

ABSTRACT

Uridine contains the chromophore uracil, a base forming part of RNA. In the range 240-290 nm, the absorption spectra of uridine and DNA are very similar and correspond to the spectral inactivation sensitivity of almost all microorganisms. This makes the uridine (absorption maximum 262 nm) an ideal actinometer for determining the germicidal photon flux in the range of 240 to 290 nm. Uridine actinometry is a simple, environmental-friendly, and easy-to-operate actinometry. Thanks to the uridine absorbance spectrum, it was found to be a perfect fit for the photon flux validation of UVC systems. Conventional UV disinfection systems are generally based on low-pressure (LP) mercury lamps which emit at 254 nm. On the other hand, UV light-emitting diodes (UV-LEDs) are a relatively new source of UV light for water treatment, emitting at various wavelengths. This protocol suggests an accurate, simple, easy to operate and straightforward way to determine the photon flux of UVC systems. Contain between 1 and 3 bullet points highlighting the customization rather than the steps of the procedure.•Because of the uridine absorbance spectrum, it is an ideal actinometer for photon flux validation of UVC systems.•Initial uridine concentration and photoproduct absorbance impact the kinetic order and quantum yield.•The protocol for UVC uridine actinometry is appropriate for UV-LP and UV-LED sources for water disinfection.

2.
J Photochem Photobiol B ; 207: 111865, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32302822

ABSTRACT

UV light-emitting diodes (UV-LEDs) have emerged as a new technology for water disinfection. Multiwell plates are a common tool in biological research, but they have never been used for UVC/UVB-inactivation experiments of microorganisms. In this study, a novel, rapid and simple UVC/UVB-inactivation assay was developed for a UV-LED system using a multiwell plate setup (96- and 24-well plates). The relative incident irradiance distribution across the exposed area was examined by spectroradiometry and nitrate-nitrite uniformity assay. The two methods showed a good correlation and high distribution factors (>0.89 and >0.94 for 96- and 24-well plates, respectively). In addition, the potential of the new system for determining disinfection efficacy of E. coli and MS2 coliphage by UV-LEDs emitting at central wavelengths of 265 nm and 285 nm was demonstrated. The inactivation rate constants were comparable to those obtained using UV-LED systems with the conventional dish (or beaker) setup, but the multiwell plate method allowed for many more repetitions. The proposed system is an alternative for UV-inactivation dose-response assay, especially when screening assays are desired, since it has the advantage of being fast, comprehensive (with a large number of simultaneous replicates) and easily adapted to various applications as UV-LED based photocatalysis experiments, UV effect on biofilm formation and UV-based AOP degradation experiments.


Subject(s)
Disinfection/methods , Escherichia coli/radiation effects , Levivirus/radiation effects , Ultraviolet Rays , Catalysis , Dose-Response Relationship, Radiation , Kinetics , Lasers , Microbial Viability/radiation effects , Models, Biological , Photochemical Processes , Water Purification
3.
Materials (Basel) ; 13(1)2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31877935

ABSTRACT

A successful attempt to degrade synthetic estrogen 17α-ethynylestradiol (EE2) is demonstrated via combining photocatalysis employing magnesium peroxide (MgO2)/low-pressure ultraviolet (LP-UV) treatment followed by biological treatment using small bioreactor platform (SBP) capsules. Reusable MgO2 was synthesized through wet chemical synthesis and extensively characterized by X-ray diffraction (XRD) for phase confirmation, X-ray photoelectron spectroscopy (XPS) for elemental composition, Brunauer-Emmett-Teller (BET) to explain a specific surface area, scanning electron microscopy (SEM) imaging surface morphology, and UV-visible (Vis) spectrophotometry. The degradation mechanism of EE2 by MgO2/LP-UV consisted of LP-UV photolysis of H2O2 in situ (produced by the catalyst under ambient conditions) to generate hydroxyl radicals, and the degradation extent depended on both MgO2 and UV dose. Moreover, the catalyst was successfully reusable for the removal of EE2. Photocatalytic treatment by MgO2 alone required 60 min (~1700 mJ/cm2) to remove 99% of the EE2, whereas biodegradation by SBP capsules alone required 24 h to remove 86% of the EE2, and complete removal was not reached. The sequential treatment of photocatalysis and SBP biodegradation to achieve complete removal required only 25 min of UV (~700 mJ/cm2) and 4 h of biodegradation (instead of >24 h). The combination of UV photocatalysis and biodegradation produced a greater level of EE2 degradation at a lower LP-UV dose and at less biodegradation time than either treatment used separately, proving that synergetic photocatalysis and biodegradation are effective treatments for degrading EE2.

4.
Water Res ; 161: 119-125, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31181447

ABSTRACT

Today, two types of lamp systems dominate the UV disinfection industry: low-pressure (LP) UV lamps and medium-pressure (MP) polychromatic lamps. Both lamp types have their advantages and disadvantages in microorganism inactivation, with LP lamps being cheaper, having longer life, and working at lower temperature, hence reducing fouling, and MP lamps showing better inactivation per germicidal dose for certain microorganisms. Bacterium-based biosensors were used to compare LP and MP irradiation. These biosensors were Escherichia coli bacteria carrying the lux operon genes under the control of different stress-responding promoters, where activation of the specific promoter is manifested as bioluminescence. MP irradiation, considerably more than LP irradiation, resulted in activation of the superoxide dismutase expression, indicating the formation of superoxide radicals inside the cells. Accordingly, pre-exposure (immunization) of the bacteria to an activator that produces superoxide radicals resulted in lower inactivation and increased resistance to MP irradiation, but not to LP irradiation. This study shows that the difference in germicidal efficiency may result from the production of intracellular superoxide radicals by MP irradiation, at wavelengths other than 254 nm, as emitted by LP lamps.


Subject(s)
Superoxides , Water Purification , Bacteria , Disinfection , Escherichia coli , Ultraviolet Rays
5.
Water Sci Technol ; 58(1): 247-52, 2008.
Article in English | MEDLINE | ID: mdl-18653961

ABSTRACT

A photocatalytic continuous stirred tank reactor (CSTR) was built at laboratory scale to inactivate two environmental bacteria strains (Flavobacterium and E. coli) in tap water. Several parameters were found to impact reactor efficiency. Bacterial initial concentration is an important factor in inactivation rate. After 30 minutes of irradiation at 10(8)-10(9) CFU mL(-1) starting concentration, a >5 log reduction was achieved while at 10(4)-10(6) CFU mL(-1) only a 2 log reduction was observed. Water hardness and pH have an important influence on the photocatalytic inactivation process. Soft water, with low Ca(+2) and Mg(+2) at low pH approximately 5.3 resulted in increased inactivation of Flavobacterium reaching >6 orders of magnitude reduction. E. coli and Flavobacterium at pH 5 were inactivated by 3 logs more as compared to pH 7 under similar conditions. pH below TiO2 isoelectric point (approximately 5.6) supports better contact between bacteria and anatase particles resulting in superior inactivation. TiO2 powder suspension was compared with immobilised powder in sol-gel coated glass beads in order to exclude the need for particles separation from the treated water. TiO2 suspension was more effective by 3 orders of magnitude when compared to coated glass beads. An interesting observation was found between the two bacterial strains based on their hydrophobicity/hydrophilicity balance. The more hydrophobic Flavobacterium compared to E. coli was inactivated photocatalytically by >3 logs more then E. coli in the first 30 minutes of irradiation interval. The results indicate the importance of the parameters involved in the contact between TiO2 particles and microorganisms that govern the successful inactivation rate in CSTR.


Subject(s)
Escherichia coli/physiology , Flavobacterium/physiology , Titanium , Water Microbiology , Bioreactors , Calcium/pharmacology , Catalysis , Colony-Forming Units Assay , Equipment Design , Escherichia coli/drug effects , Escherichia coli/radiation effects , Flavobacterium/drug effects , Flavobacterium/radiation effects , Hydrogen-Ion Concentration , Kinetics , Magnesium/pharmacology , Phase Transition , Photochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...