Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Nephrol ; 32(9): 2242-2254, 2021 09.
Article in English | MEDLINE | ID: mdl-34112705

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) causes significan t morbidity, mainly from pulmonary involvement, extrapulmonary symptoms are also major componen ts of the disease. Kidney disease, usually presenting as AKI, is particularly severe among patients with COVID-19. It is unknown, however, whether such injury results from direct kidney infection with COVID-19's causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or from indirect mechanisms. METHODS: Using ex vivo cell models, we sought to analyze SARS-CoV-2 interactions with kidney tubular cells and assess direct tubular injury. These models comprised primary human kidney epithelial cells (derived from nephrectomies) and grown as either proliferating monolayers or quiescent three-dimensional kidney spheroids. RESULTS: We demonstrated that viral entry molecules and high baseline levels of type 1 IFN-related molecules were present in monolayers and kidney spheroids. Although both models support viral infection and replication, they did not exhibit a cytopathic effect and cell death, outcomes that were strongly present in SARS-CoV-2-infected controls (African green monkey kidney clone E6 [Vero E6] cultures). A comparison of monolayer and spheroid cultures demonstrated higher infectivity and replication of SARS-CoV-2 in actively proliferating monolayers, although the spheroid cultures exhibited high er levels of ACE2. Monolayers exhibited elevation of some tubular injury molecules-including molecules related to fibrosis (COL1A1 and STAT6) and dedifferentiation (SNAI2)-and a loss of cell identity, evident by reduction in megalin (LRP2). The three-dimensional spheroids were less prone to such injury. CONCLUSIONS: SARS-CoV-2 can infect kidney cells without a cytopathic effect. AKI-induced cellular proliferation may potentially intensify infectivity and tubular damage by SARS-CoV-2, suggesting that early intervention in AKI is warranted to help minimize kidney infection.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/virology , COVID-19/complications , SARS-CoV-2/pathogenicity , Spheroids, Cellular/virology , Animals , Cells, Cultured , Chlorocebus aethiops , Cohort Studies , Cytopathogenic Effect, Viral , Epithelial Cells/pathology , Epithelial Cells/virology , Host Microbial Interactions , Humans , Interferon Type I/metabolism , Kidney/immunology , Kidney/pathology , Kidney/virology , Mice , Mice, Inbred NOD , Mice, SCID , Models, Biological , Pandemics , Receptors, Virus/metabolism , Retrospective Studies , SARS-CoV-2/physiology , Spheroids, Cellular/pathology , Vero Cells , Virus Replication
3.
Sci Rep ; 10(1): 22097, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33328501

ABSTRACT

In-vivo single cell clonal analysis in the adult mouse kidney has previously shown lineage-restricted clonal proliferation within varying nephron segments as a mechanism responsible for cell replacement and local regeneration. To analyze ex-vivo clonal growth, we now preformed limiting dilution to generate genuine clonal cultures from one single human renal epithelial cell, which can give rise to up to 3.4 * 106 cells, and analyzed their characteristics using transcriptomics. A comparison between clonal cultures revealed restriction to either proximal or distal kidney sub-lineages with distinct cellular and molecular characteristics; rapidly amplifying de-differentiated clones and a stably proliferating cuboidal epithelial-appearing clones, respectively. Furthermore, each showed distinct molecular features including cell-cycle, epithelial-mesenchymal transition, oxidative phosphorylation, BMP signaling pathway and cell surface markers. In addition, analysis of clonal versus bulk cultures show early clones to be more quiescent, with elevated expression of renal developmental genes and overall reduction in renal identity markers, but with an overlapping expression of nephron segment identifiers and multiple identity. Thus, ex-vivo clonal growth mimics the in-vivo situation displaying lineage-restricted precursor characteristics of mature renal cells. These data suggest that for reconstruction of varying renal lineages with human adult kidney based organoid technology and kidney regeneration ex-vivo, use of multiple heterogeneous precursors is warranted.


Subject(s)
Clonal Evolution/genetics , Kidney/growth & development , Mesoderm/growth & development , Regeneration/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics , Computational Biology , Epithelial Cells/cytology , Epithelial-Mesenchymal Transition/genetics , Humans , Kidney/cytology , Mesoderm/metabolism , Nephrons/growth & development , Nephrons/metabolism , Primary Cell Culture , Single-Cell Analysis , Stem Cells/cytology
4.
J Am Soc Nephrol ; 31(12): 2757-2772, 2020 12.
Article in English | MEDLINE | ID: mdl-32753400

ABSTRACT

BACKGROUND: Cell-based therapies aimed at replenishing renal parenchyma have been proposed as an approach for treating CKD. However, pathogenic mechanisms involved in CKD such as renal hypoxia result in loss of kidney function and limit engraftment and therapeutic effects of renal epithelial progenitors. Jointly administering vessel-forming cells (human mesenchymal stromal cells [MSCs] and endothelial colony-forming cells [ECFCs]) may potentially result in in vivo formation of vascular networks. METHODS: We administered renal tubule-forming cells derived from human adult and fetal kidneys (previously shown to exert a functional effect in CKD mice) into mice, alongside MSCs and ECFCs. We then assessed whether this would result in generation of "renovascular units" comprising both vessels and tubules with potential interaction. RESULTS: Directly injecting vessel-forming cells and renal tubule-forming cells into the subcutaneous and subrenal capsular space resulted in self-organization of donor-derived vascular networks that connected to host vasculature, alongside renal tubules comprising tubular epithelia of different nephron segments. Vessels derived from MSCs and ECFCs augmented in vivo tubulogenesis by the renal tubule-forming cells. In vitro coculture experiments showed that MSCs and ECFCs induced self-renewal and genes associated with mesenchymal-epithelial transition in renal tubule-forming cells, indicating paracrine effects. Notably, after renal injury, renal tubule-forming cells and vessel-forming cells infused into the renal artery did not penetrate the renal vascular network to generate vessels; only administering them into the kidney parenchyma resulted in similar generation of human renovascular units in vivo. CONCLUSIONS: Combined cell therapy of vessel-forming cells and renal tubule-forming cells aimed at alleviating renal hypoxia and enhancing tubulogenesis holds promise as the basis for new renal regenerative therapies.


Subject(s)
Endothelial Cells/cytology , Kidney Glomerulus/cytology , Kidney Tubules/cytology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Animals , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Cell- and Tissue-Based Therapy , Coculture Techniques , Humans , Mice , Neovascularization, Physiologic
5.
Cell Rep ; 30(3): 852-869.e4, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31968258

ABSTRACT

End-stage renal disease is a worldwide epidemic requiring renal replacement therapy. Harvesting tissue from failing kidneys and autotransplantation of tissue progenitors could theoretically delay the need for dialysis. Here we use healthy and end-stage human adult kidneys to robustly expand proliferative kidney epithelial cells and establish 3D kidney epithelial cultures termed "nephrospheres." Formation of nephrospheres reestablishes renal identity and function in primary cultures. Transplantation into NOD/SCID mice shows that nephrospheres restore self-organogenetic properties lost in monolayer cultures, allowing long-term engraftment as tubular structures, potentially adding nephron segments and demonstrating self-organization as critical to survival. Furthermore, long-term tubular engraftment of nephrospheres is functionally beneficial in murine models of chronic kidney disease. Remarkably, nephrospheres inhibit pro-fibrotic collagen production in cultured fibroblasts via paracrine modulation, while transplanted nephrospheres induce transcriptional signatures of proliferation and release from quiescence, suggesting re-activation of endogenous repair. These data support the use of human nephrospheres for renal cell therapy.


Subject(s)
Kidney/injuries , Kidney/pathology , Spheroids, Cellular/pathology , Wound Healing , Animals , Cell Differentiation , Cell Proliferation , Chronic Disease , Disease Models, Animal , Epithelial Cells/pathology , Fibrosis , Humans , Kidney/physiopathology , Mice, Inbred NOD , Mice, SCID , Renal Insufficiency, Chronic/pathology , Spheroids, Cellular/transplantation
6.
PLoS Genet ; 15(7): e1008248, 2019 07.
Article in English | MEDLINE | ID: mdl-31260446

ABSTRACT

The localization of mRNAs encoding secreted/membrane proteins (mSMPs) to the endoplasmic reticulum (ER) likely facilitates the co-translational translocation of secreted proteins. However, studies have shown that mSMP recruitment to the ER in eukaryotes can occur in a manner that is independent of the ribosome, translational control, and the signal recognition particle, although the mechanism remains largely unknown. Here, we identify a cis-acting RNA sequence motif that enhances mSMP localization to the ER and appears to increase mRNA stability, and both the synthesis and secretion of secretome proteins. Termed SECReTE, for secretion-enhancing cis regulatory targeting element, this motif is enriched in mRNAs encoding secretome proteins translated on the ER in eukaryotes and on the inner membrane of prokaryotes. SECReTE consists of ≥10 nucleotide triplet repeats enriched with pyrimidine (C/U) every third base (i.e. NNY, where N = any nucleotide, Y = pyrimidine) and can be present in the untranslated as well as the coding regions of the mRNA. Synonymous mutations that elevate the SECReTE count in a given mRNA (e.g. SUC2, HSP150, and CCW12) lead to an increase in protein secretion in yeast, while a reduction in count led to less secretion and physiological defects. Moreover, the addition of SECReTE to the 3'UTR of an mRNA for an exogenously expressed protein (e.g. GFP) led to its increased secretion from yeast cells. Thus, SECReTE constitutes a novel RNA motif that facilitates ER-localized mRNA translation and protein secretion.


Subject(s)
Fungal Proteins/genetics , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , 3' Untranslated Regions , Endoplasmic Reticulum/genetics , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Nucleotide Motifs , Protein Biosynthesis , RNA Stability , RNA Transport , RNA, Fungal/chemistry , RNA, Fungal/metabolism , Saccharomyces cerevisiae/metabolism , Silent Mutation
7.
Biochim Biophys Acta ; 1863(5): 911-21, 2016 May.
Article in English | MEDLINE | ID: mdl-26367800

ABSTRACT

Peroxisomes are distinct membrane-enclosed organelles involved in the ß-oxidation of fatty acids and synthesis of ether phospholipids (e.g. plasmalogens), as well as cholesterol and its derivatives (e.g. bile acids). Peroxisomes comprise a distinct and highly segregated subset of cellular proteins, including those of the peroxisome membrane and the interior matrix, and while the mechanisms of protein import into peroxisomes have been extensively studied, they are not fully understood. Here we will examine the potential role of RNA trafficking and localized translation on protein import into peroxisomes and its role in peroxisome biogenesis and function. Given that RNAs encoding peroxisome biogenesis (PEX) and matrix proteins have been found in association with the endoplasmic reticulum and peroxisomes, it suggests that localized translation may play a significant role in the import pathways of these different peroxisomal constituents.


Subject(s)
Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Organelle Biogenesis , Peroxisomes/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Animals , Biological Transport , Endoplasmic Reticulum/chemistry , Eukaryotic Cells/chemistry , Eukaryotic Cells/metabolism , Gene Expression Regulation , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mutation , Peroxisomes/chemistry , Plants/chemistry , Plants/metabolism , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Sorting Signals , RNA, Messenger/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction
8.
Proc Natl Acad Sci U S A ; 110(27): 10970-5, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23776224

ABSTRACT

Telomerase is a ribonucleoprotein complex that extends the 3' ends of linear chromosomes. The specialized telomerase reverse transcriptase requires a multidomain RNA (telomerase RNA, TER), which includes an integral RNA template and functionally important template-adjacent pseudoknot. The structure of the human TER pseudoknot revealed that the loops interact with the stems to form a triple helix shown to be important for activity in vitro. A similar triple helix has been predicted to form in diverse fungi TER pseudoknots. The solution NMR structure of the Kluyveromyces lactis pseudoknot, presented here, reveals that it contains a long pyrimidine motif triple helix with unexpected features that include three individual bulge nucleotides and a C(+)•G-C triple adjacent to a stem 2-loop 2 junction. Despite significant differences in sequence and base triples, the 3D shape of the human and K. lactis TER pseudoknots are remarkably similar. Analysis of the effects of nucleotide substitutions on cell growth and telomere lengths provides evidence that this conserved structure forms in endogenously assembled telomerase and is essential for telomerase function in vivo.


Subject(s)
Kluyveromyces/enzymology , Nucleic Acid Conformation , RNA, Bacterial/chemistry , RNA/chemistry , Telomerase/chemistry , Base Sequence , Humans , Kluyveromyces/genetics , Models, Molecular , Mutagenesis , Nuclear Magnetic Resonance, Biomolecular , Pyrimidines/chemistry , RNA/genetics , RNA Stability , RNA, Bacterial/genetics , RNA, Fungal/chemistry , RNA, Fungal/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Telomerase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...