Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Phys Chem A ; 127(23): 5005-5017, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37279180

ABSTRACT

Density functional theory calculations were used to create a library of ring strain energies (RSEs) for 73 cyclopentene derivatives with potential use as monomers for ring-opening metathesis polymerization (ROMP). An overarching goal was to probe how substituent choice may influence torsional strain, which is the driving force for ROMP and one of the most understudied types of RSEs. Potential trends investigated include substituent location, size, electronegativity, hybridization, and steric bulk. Using traditional and recently developed homodesmotic equations, our results show that the size and substitution (bulk) of the atom directly bonded to the ring have the greatest influence on torsional RSE. A complex interplay between bond length, bond angle, and dihedral angle dictates the relative eclipsed conformations between the substituent and its neighboring hydrogens and was found to be responsible for the notable differences in RSEs. Furthermore, substituents placed on the homoallylic position resulted in higher RSEs than the same substituent placed on the allylic position due to increased eclipsing interactions. Different levels of theory were also assessed, and it was determined that consideration of electron correlation in calculations increased RSEs by ∼2-5 kcal mol-1. Further increasing the level of theory did not significantly change RSEs, indicating that the increased computational cost and time may not be necessary for improved accuracy.

2.
ACS Macro Lett ; 10(6): 760-766, 2021 06 15.
Article in English | MEDLINE | ID: mdl-35549097

ABSTRACT

Well-controlled ring-opening metathesis polymerization (ROMP) of δ-pinene is reported. The monomer is produced through a facile, metal-free, three-step synthesis from highly abundant and sustainable α-pinene. Using Grubbs third-generation catalyst, δ-pinene undergoes ROMP to high conversion (>95%) with molar mass up to 70 kg mol-1 and narrow dispersity (<1.2). A highly regioregular propagation mechanism was concluded by NMR spectroscopic analysis that revealed a head-to-tail (HT, >95%) microstructure and high trans content (>98%). Successful ROMP is corroborated with density functional theory calculations on δ-pinene's ring strain energy (∼35 kJ mol-1). Poly(δ-pinene) has a high glass transition temperature (∼104 °C) and a unique chiral microstructure bearing gem-dimethylcyclobutane rings. Controlled ROMP also allowed the synthesis of block copolymers containing segments of poly(δ-pinene) and polynorbornene which are discussed. Finally, bulk polymerization of δ-pinene is possible, indicating a greener approach to these materials, albeit with some loss of control.


Subject(s)
Polyenes , Molecular Structure , Molecular Weight , Polyenes/chemistry , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...