Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 46(6): 1793-9, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12019092

ABSTRACT

Lipid A is the hydrophobic anchor of lipopolysaccharide (LPS) and forms the major lipid component of the outer monolayer of the outer membrane of gram-negative bacteria. Lipid A is required for bacterial growth and virulence, and inhibition of its biosynthesis is lethal to bacteria. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a metalloenzyme that catalyzes the second step in the biosynthesis of lipid A. Inhibitors of LpxC have previously been shown to have antibiotic activities. We have screened a metalloenzyme inhibitor library for antibacterial activities against an Escherichia coli strain with reduced LpxC activity. From this screen, a series of sulfonamide derivatives of the alpha-(R)-amino hydroxamic acids, exemplified by BB-78484 and BB-78485, have been identified as having potent inhibitory activities against LpxC in an in vitro assay. Leads from this series showed gram-negative selective activities against members of the Enterobacteriaceae, Serratia marcescens, Morganella morganii, Haemophilus influenzae, Moraxella catarrhalis, and Burkholderia cepacia. BB-78484 was bactericidal against E. coli, achieving 3-log killing in 4 h at a concentration 4 times above the MIC, as would be predicted for an inhibitor of lipid A biosynthesis. E. coli mutants with decreased susceptibility to BB-78484 were selected. Analysis of these mutants revealed that resistance arose as a consequence of mutations in the fabZ or lpxC genes. These data confirm the antibacterial target of BB-78484 and BB-78485 and validate LpxC as a target for gram-negative selective antibacterials.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Enzyme Inhibitors/pharmacology , Naphthalenes/pharmacology , Sulfonamides/pharmacology , Amidohydrolases/genetics , Bacteria/enzymology , Bacteria/genetics , DNA, Recombinant/genetics , Drug Resistance, Microbial , Drug Synergism , Escherichia coli/genetics , Genotype , Hydro-Lyases/genetics , Microbial Sensitivity Tests , Mutation/genetics , Plasmids/genetics , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...