Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 568(1): 50-4, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25965561

ABSTRACT

BACKGROUND: A functional variant in the promoter region of the gene encoding tumor necrosis factor (TNF; rs1800629, -308G>A) showed to confer susceptibility to T1D. However, TNF rs1800629 was found, in several populations, to be in linkage disequilibrium with HLA susceptibility haplotypes to T1D. We evaluated the association of TNF rs1800629 with T1D in a cohort of Brazilian subjects, and assessed the impact of HLA susceptibility haplotypes in this association. METHODS: 659 subjects with T1D and 539 control subjects were genotyped for TNF-308G>A variant. HLA-DRB1 and HLA-DQB1 genes were genotyped in a subset of 313 subjects with T1D and 139 control subjects. RESULTS: Associations with T1D were observed for the A-allele of rs1800629 (OR 1.69, 95% CI 1.33-2.15, p<0.0001, in a codominant model) and for 3 HLA haplotypes: DRB1*03:01-DQB1*02:01 (OR 5.37, 95% CI 3.23-8.59, p<0.0001), DRB1*04:01-DQB1*03:02 (OR 2.95, 95% CI 1.21-7.21, p=0.01) and DRB1*04:02-DQB1*03:02 (OR 2.14, 95% CI 1.02-4.50, p=0.04). Linkage disequilibrium was observed between TNF rs1800629 and HLA-DRB1 and HLA-DQB1 alleles. In a stepwise regression analysis HLA haplotypes, but not TNF rs1800629, remained independently associated with T1D. CONCLUSION: Our results do not support an independent effect of allelic variations of TNF in the genetic susceptibility to T1D.


Subject(s)
Diabetes Mellitus, Type 1/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Tumor Necrosis Factor-alpha/genetics , Adult , Brazil , Case-Control Studies , Female , Genes, Dominant , Genetic Association Studies , Genetic Predisposition to Disease , Haplotypes , Humans , Linkage Disequilibrium , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
2.
Diabetol Metab Syndr ; 5(1): 1, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-23298687

ABSTRACT

To explore the molecular pathways underlying thiazolidinediones effects on pancreatic islets in conditions mimicking normo- and hyperglycemia, apoptosis rate and transcriptional response to Pioglitazone at both physiological and supraphysiological glucose concentrations were evaluated. Adult rat islets were cultured at physiological (5.6 mM) and supraphysiological (23 mM) glucose concentrations in presence of 10 µM Pioglitazone or vehicle. RNA expression profiling was evaluated with the PancChip 13k cDNA microarray after 24-h, and expression results for some selected genes were validated by qRT-PCR. The effects of Pioglitazone were investigated regarding apoptosis rate after 24-, 48- and 72-h. At 5.6 mM glucose, 101 genes were modulated by Pioglitazone, while 1,235 genes were affected at 23 mM glucose. Gene networks related to lipid metabolism were identified as altered by Pioglitazone at both glucose concentrations. At 23 mM glucose, cell cycle and cell death pathways were significantly regulated as well. At 5.6 mM glucose, Pioglitazone elicited a transient reduction in islets apoptosis rate while at 23 mM, Bcl2 expression was reduced and apoptosis rate was increased by Pioglitazone. Our data demonstrate that the effect of Pioglitazone on gene expression profile and apoptosis rate depends on the glucose concentration. The modulation of genes related to cell death and the increased apoptosis rate observed at supraphysiological glucose concentration raise concerns about Pioglitazone's direct effects in conditions of hyperglycemia and reinforce the necessity of additional studies designed to evaluate TZDs effects on the preservation of ß-cell function in situations where glucotoxicity might be more relevant than lipotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...