Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Infect Dis ; 75(1): e10-e19, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35385575

ABSTRACT

BACKGROUND: Understanding the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) household transmission is important for adequate infection control measures in this ongoing pandemic. METHODS: Households were enrolled upon a polymerase chain reaction-confirmed index case between October and December 2020, prior to the coronavirus disease 2019 vaccination program. Saliva samples were obtained by self-sampling at days 1, 3, 5, 7, 10, 14, 21, 28, 35, and 42 from study inclusion. Nasopharyngeal swabs (NPS) and oropharyngeal swabs (OPS) were collected by the research team at day 7 and capillary blood samples at day 42. Household secondary attack rate (SAR) and per-person SAR were calculated based on at least 1 positive saliva, NPS, OPS, or serum sample. Whole genome sequencing was performed to investigate the possibility of multiple independent SARS-CoV-2 introductions within a household. RESULTS: Eighty-five households were included consisting of 326 (unvaccinated) individuals. Comparable numbers of secondary cases were identified by saliva (133/241 [55.2%]) and serum (127/213 [59.6%]). The household SAR was 88.2%. The per-person SAR was 64.3%. The majority of the secondary cases tested positive in saliva at day 1 (103/150 [68.7%]). Transmission from index case to household member was not affected by age or the nature of their relationship. Phylogenetic analyses suggested a single introduction for the investigated households. CONCLUSIONS: Households have a pivotal role in SARS-CoV-2 transmission. By repeated saliva self-sampling combined with NPS, OPS, and serology, we found the highest SARS-CoV-2 household transmission rates reported to date. Salivary (self-) sampling of adults and children is suitable and attractive for near real-time monitoring of SARS-CoV-2 transmission in this setting.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/diagnosis , COVID-19/epidemiology , Child , Humans , Pandemics , Phylogeny , Saliva
2.
Ticks Tick Borne Dis ; 9(5): 1143-1152, 2018 07.
Article in English | MEDLINE | ID: mdl-29716838

ABSTRACT

An increasing number of studies have investigated the consequences of biodiversity loss for the occurrence of vector-borne diseases such as Lyme borreliosis, the most common tick-borne disease in the northern hemisphere. As host species differ in their ability to transmit the Lyme borreliosis bacteria Borrelia burgdorferi s.l. to ticks, increased host diversity can decrease disease prevalence by increasing the proportion of dilution hosts, host species that transmit pathogens less efficiently. Previous research shows that Lyme borreliosis risk differs between forest types and suggests that a higher diversity of host species might dilute the contribution of small rodents to infect ticks with B. afzelii, a common Borrelia genospecies. However, empirical evidence for a dilution effect in Europe is largely lacking. We tested the dilution effect hypothesis in 19 Belgian forest stands of different forest types along a diversity gradient. We used empirical data and a Bayesian belief network to investigate the impact of the proportion of dilution hosts on the density of ticks infected with B. afzelii, and identified the key drivers determining the density of infected ticks, which is a measure of human infection risk. Densities of ticks and B. afzelii infection prevalence differed between forest types, but the model indicated that the density of infected ticks is hardly affected by dilution. The most important variables explaining variability in disease risk were related to the density of ticks. Combining empirical data with a model-based approach supported decision making to reduce tick-borne disease risk. We found a low probability of a dilution effect for Lyme borreliosis in a north-western European context. We emphasize that under these circumstances, Lyme borreliosis prevention should rather aim at reducing tick-human contact rate instead of attempting to increase the proportion of dilution hosts.


Subject(s)
Biodiversity , Forests , Lyme Disease/epidemiology , Lyme Disease/prevention & control , Tick-Borne Diseases/transmission , Animals , Bayes Theorem , Belgium/epidemiology , Borrelia burgdorferi/isolation & purification , Borrelia burgdorferi Group/isolation & purification , Host-Pathogen Interactions , Ixodes/microbiology , Ixodes/physiology , Lyme Disease/microbiology , Lyme Disease/transmission , Rodentia/microbiology , Rodentia/parasitology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/prevention & control
3.
Ticks Tick Borne Dis ; 9(2): 141-145, 2018 02.
Article in English | MEDLINE | ID: mdl-28869190

ABSTRACT

The human pathogens Borrelia afzelii, which causes Lyme borreliosis and B. miyamotoi, which causes relapsing fever, both circulate between Ixodes ricinus ticks and rodents. The spatiotemporal dynamics in the prevalence of these pathogens have not yet been fully elucidated, but probably depend on the spatiotemporal population dynamics of small rodents. We aimed to evaluate the effect of different forest types on the density of infected nymphs in different years and to obtain more knowledge about the spatial and temporal patterns of ticks and tick-borne pathogens. We analysed unfed nymphal ticks from 22 stands of four different forest types in Belgium in 2009, 2010, 2013 and 2014 and found that the density of nymphs in general and the density of nymphs infected with B. afzelii and B. miyamotoi varied yearly, but without temporal variation in the infection prevalence. The yearly variation in density of infected nymphs in our study thus seems to be caused most by the variation in the density of nymphs, which makes it a good predictor of disease risk. The risk for rodent-associated tick-borne diseases also varied between forest types. We stress the need to elucidate the contribution of the host community composition to tick-borne disease risk.


Subject(s)
Borrelia/physiology , Ixodes/microbiology , Rodent Diseases/epidemiology , Tick-Borne Diseases/veterinary , Animals , Belgium/epidemiology , Borrelia burgdorferi Group/physiology , Ixodes/growth & development , Lyme Disease/epidemiology , Nymph/microbiology , Population Density , Prevalence , Rodent Diseases/microbiology , Seasons , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology
4.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28724731

ABSTRACT

Predators and competitors of vertebrates can in theory reduce the density of infected nymphs (DIN)-an often-used measure of tick-borne disease risk-by lowering the density of reservoir-competent hosts and/or the tick burden on reservoir-competent hosts. We investigated this possible indirect effect of predators by comparing data from 20 forest plots across the Netherlands that varied in predator abundance. In each plot, we measured the density of questing Ixodes ricinus nymphs (DON), DIN for three pathogens, rodent density, the tick burden on rodents and the activity of mammalian predators. We analysed whether rodent density and tick burden on rodents were correlated with predator activity, and how rodent density and tick burden predicted DON and DIN for the three pathogens. We found that larval burden on two rodent species decreased with activity of two predator species, while DON and DIN for all three pathogens increased with larval burden on rodents, as predicted. Path analyses supported an indirect negative correlation of activity of both predator species with DON and DIN. Our results suggest that predators can indeed lower the number of ticks feeding on reservoir-competent hosts, which implies that changes in predator abundance may have cascading effects on tick-borne disease risk.


Subject(s)
Ixodes , Predatory Behavior , Rodentia/parasitology , Animals , Forests , Netherlands , Nymph , Population Density , Tick-Borne Diseases
5.
Parasitology ; 143(10): 1310-9, 2016 09.
Article in English | MEDLINE | ID: mdl-27173094

ABSTRACT

Lyme disease is caused by bacteria of the Borrelia burgdorferi genospecies complex and transmitted by Ixodid ticks. In North America only one pathogenic genospecies occurs, in Europe there are several. According to the dilution effect hypothesis (DEH), formulated in North America, nymphal infection prevalence (NIP) decreases with increasing host diversity since host species differ in transmission potential. We analysed Borrelia infection in nymphs from 94 forest stands in Belgium, which are part of a diversification gradient with a supposedly related increasing host diversity: from pine stands without to oak stands with a shrub layer. We expected changing tree species and forest structure to increase host diversity and decrease NIP. In contrast with the DEH, NIP did not differ between different forest types. Genospecies diversity however, and presumably also host diversity, was higher in oak than in pine stands. Infected nymphs tended to harbour Borrelia afzelii infection more often in pine stands while Borrelia garinii and Borrelia burgdorferi ss. infection appeared to be more prevalent in oak stands. This has important health consequences, since the latter two cause more severe disease manifestations. We show that the DEH must be nuanced for Europe and should consider the response of multiple pathogenic genospecies.


Subject(s)
Arachnid Vectors/parasitology , Borrelia burgdorferi/physiology , Forests , Ixodes/parasitology , Lyme Disease/epidemiology , Lyme Disease/microbiology , Animals , Arachnid Vectors/physiology , Belgium/epidemiology , Biodiversity , Borrelia burgdorferi/genetics , Europe/epidemiology , Ixodes/physiology , Lyme Disease/transmission , North America/epidemiology , Nymph/microbiology , Pinus/microbiology , Polymerase Chain Reaction , Quercus/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...