Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthritis Cartilage ; 25(3): 413-420, 2017 03.
Article in English | MEDLINE | ID: mdl-27554995

ABSTRACT

OBJECTIVE: To investigate the effect of decellularized cartilage-derived matrix (CDM) scaffolds, by itself and as a composite scaffold with a calcium phosphate (CaP) base, for the repair of osteochondral defects. It was hypothesized that the chondral defects would heal with fibrocartilaginous tissue and that the composite scaffold would result in better bone formation. METHODS: After an 8-week pilot experiment in a single horse, scaffolds were implanted in eight healthy horses in osteochondral defects on the medial trochlear ridge of the femur. In one joint a composite CDM-CaP scaffold was implanted (+P), in the contralateral joint a CDM only (-P) scaffold. After euthanasia at 6 months, tissues were analysed by histology, immunohistochemistry, micro-CT, biochemistry and biomechanical evaluation. RESULTS: The 8-week pilot showed encouraging formation of bone and cartilage, but incomplete defect filling. At 6 months, micro-CT and histology showed much more limited filling of the defect, but the CaP component of the +P scaffolds was well integrated with the surrounding bone. The repair tissue was fibrotic with high collagen type I and low type II content and with no differences between the groups. There were also no biochemical differences between the groups and repair tissue was much less stiff than normal tissue (P < 0.0001). CONCLUSIONS: The implants failed to produce reasonable repair tissue in this osteochondral defect model, although the CaP base in the -P group integrated well with the recipient bone. The study stresses the importance of long-term in vivo studies to assess the efficacy of cartilage repair techniques.


Subject(s)
Cartilage, Articular/pathology , Cartilage/metabolism , Tissue Scaffolds , Animals , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/injuries , Disease Models, Animal , Horses , X-Ray Microtomography
2.
Cartilage ; 5(4): 221-30, 2014 Oct.
Article in English | MEDLINE | ID: mdl-26069701

ABSTRACT

OBJECTIVE: Although extracellular matrix (ECM)-derived scaffolds have been extensively studied and applied in a number of clinical applications, the use of ECM as a biomaterial for (osteo)chondral regeneration is less extensively explored. This study aimed at evaluating the chondrogenic potential of cells seeded on cartilage-derived matrix (CDM) scaffolds in vitro. DESIGN: Scaffolds were generated from decellularized equine articular cartilage and seeded with either chondrocytes or multipotent stromal cells (MSCs). After 2, 4, and 6 weeks of in vitro culture, CDM constructs were analyzed both histologically (hematoxylin and eosin, Safranin-O, collagen types I and II) and biochemically (glycosaminoglycan [GAG] and DNA content). RESULTS: After 4 weeks, both cell types demonstrated chondrogenic differentiation; however, the MSCs significantly outperformed chondrocytes in producing new GAG-containing cartilaginous matrix. CONCLUSION: These promising in vitro results underscore the potency of CDM scaffolds in (osteo)chondral defect repair.

SELECTION OF CITATIONS
SEARCH DETAIL
...