Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Front Public Health ; 12: 1324662, 2024.
Article in English | MEDLINE | ID: mdl-38590812

ABSTRACT

With the growing climate change crisis, public health agencies and practitioners must increasingly develop guidance documents addressing the public health risks and protective measures associated with multi-hazard events. Our Policy and Practice Review aims to assess current public health guidance and related messaging about co-exposure to wildfire smoke and extreme heat and recommend strengthened messaging to better protect people from these climate-sensitive hazards. We reviewed public health messaging published by governmental agencies between January 2013 and May 2023 in Canada and the United States. Publicly available resources were eligible if they discussed the co-occurrence of wildfire smoke and extreme heat and mentioned personal interventions (protective measures) to prevent exposure to either hazard. We reviewed local, regional, and national governmental agency messaging resources, such as online fact sheets and guidance documents. We assessed these resources according to four public health messaging themes, including (1) discussions around vulnerable groups and risk factors, (2) symptoms associated with these exposures, (3) health risks of each exposure individually, and (4) health risks from combined exposure. Additionally, we conducted a detailed assessment of current messaging about measures to mitigate exposure. We found 15 online public-facing resources that provided health messaging about co-exposure; however, only one discussed all four themes. We identified 21 distinct protective measures mentioned across the 15 resources. There is considerable variability and inconsistency regarding the types and level of detail across described protective measures. Of the identified 21 protective measures, nine may protect against both hazards simultaneously, suggesting opportunities to emphasize these particular messages to address both hazards together. More precise, complete, and coordinated public health messaging would protect against climate-sensitive health outcomes attributable to wildfire smoke and extreme heat co-exposures.


Subject(s)
Extreme Heat , Wildfires , Humans , United States , Smoke/adverse effects , Climate Change , Public Health , Environmental Exposure/adverse effects , Nicotiana
2.
Environ Health Perspect ; 131(12): 127014, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38109118

ABSTRACT

BACKGROUND: Preterm birth (PTB), defined as birth before 37 wk gestation, is associated with hypertension, diabetes, inadequate prenatal care, unemployment or poverty, and metal exposure. Indigenous individuals are more likely to have maternal risk factors associated with PTB compared with other populations in the United States; however, the role of environmental metals on PTB among pregnant Indigenous women remains uncertain. Previous research identified associations between PTB and individual metals, but there is limited investigation on metal mixtures and this birth outcome. OBJECTIVES: We used a mixtures analysis framework to investigate the association between metal mixtures and PTB among pregnant Indigenous women from the Navajo Birth Cohort Study (NBCS). METHODS: Maternal urine and blood samples were collected at the time of study enrollment and analyzed for metals by inductively coupled plasma dynamic reaction cell mass spectrometry. Bayesian Profile Regression was used to identify subgroups (clusters) of individuals with similar patterns of coexposure and to model association with PTB. RESULTS: Results indicated six subgroups of maternal participants with distinct exposure profiles, including one group with low exposure to all metals and one group with total arsenic, cadmium, lead, and uranium concentrations exceeding representative concentrations calculated from the National Health and Nutrition Examination Survey (NHANES). Compared with the reference group (i.e., the lowest exposure subgroup), the subgroup with the highest overall exposure had a relative risk of PTB of 2.9 times (95% credible interval: 1.1, 6.1). Exposures in this subgroup were also higher overall than NHANES median values for women 14-45 years of age. DISCUSSION: Given the wide range of exposures and elevated PTB risk for the most exposed subgroups in a relatively small study, follow-up investigation is recommended to evaluate associations between metal mixture profiles and other birth outcomes and to test hypothesized mechanisms of action for PTB and oxidative stress caused by environmental metals. https://doi.org/10.1289/EHP10361.


Subject(s)
Premature Birth , Uranium , Infant, Newborn , Humans , Female , Pregnancy , Pregnant Women , Nutrition Surveys , Bayes Theorem , Cohort Studies , Premature Birth/chemically induced , Premature Birth/epidemiology
3.
J Air Waste Manag Assoc ; 73(6): 502-516, 2023 06.
Article in English | MEDLINE | ID: mdl-36880994

ABSTRACT

Implications: Non-tailpipe emissions driven by springtime road dust in northern latitude communities is increasing in importance for air pollution control and improving our understanding of the health effects of chemical mixtures from particulate matter exposure. High-volume samples from a near-road site indicated that days affected by springtime road dust are substantively different from other days with respect to particulate matter mixture composition and meteorological drivers. The high load of trace elements in PM10 on high road dust days has important implications for the acute toxicity of inhaled air and subsequent health effects. The complex relationships between road dust and weather identified in this study may facilitate further research on the health effects of chemical mixtures related to road dust while also highlighting potential changes in this unique form of air pollution as the climate changes.


Subject(s)
Air Pollutants , Air Pollution , Dust/analysis , Air Pollutants/analysis , British Columbia , Environmental Monitoring/methods , Air Pollution/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis
4.
Environ Res ; 216(Pt 1): 114484, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36220446

ABSTRACT

Many countries, including Italy, have experienced significant social and spatial inequalities in mortality during the Covid-19 pandemic. This study applies a multiple exposures framework to investigate how joint place-based factors influence spatial inequalities of excess mortality during the first year of the Covid -19 pandemic in the Lombardy region of Italy. For the Lombardy region, we integrated municipality-level data on all-cause mortality between 2015 and 2020 with 13 spatial covariates, including 5-year average concentrations of six air pollutants, the average temperature in 2020, and multiple socio-demographic factors, and health facilities per capita. Using the clustering algorithm Bayesian profile regression, we fit spatial covariates jointly to identify clusters of municipalities with similar exposure profiles and estimated associations between clusters and excess mortality in 2020. Cluster analysis resulted in 13 clusters. Controlling for spatial autocorrelation of excess mortality and health-protective agency, two clusters had significantly elevated excess mortality than the rest of Lombardy. Municipalities in these highest-risk clusters are in Bergamo, Brescia, and Cremona provinces. The highest risk cluster (C11) had the highest long-term particulate matter air pollution levels (PM2.5 and PM10) and significantly elevated NO2 and CO air pollutants, temperature, proportion ≤18 years, and male-to-female ratio. This cluster is significantly lower for income and ≥65 years. The other high-risk cluster, Cluster 10 (C10), is elevated significantly for ozone but significantly lower for other air pollutants. Covariates with elevated levels for C10 include proportion 65 years or older and a male-to-female ratio. Cluster 10 is significantly lower for income, temperature, per capita health facilities, ≤18 years, and population density. Our results suggest that joint built, natural, and socio-demographic factors influenced spatial inequalities of excess mortality in Lombardy in 2020. Studies must apply a multiple exposures framework to guide policy decisions addressing the complex and multi-dimensional nature of spatial inequalities of Covid-19-related mortality.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Male , Female , Humans , Pandemics , Bayes Theorem , Air Pollution/analysis , Environmental Exposure/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Particulate Matter/analysis , Mortality
5.
Sci Rep ; 12(1): 19085, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36352013

ABSTRACT

Wastewater-based epidemiology (WBE) has emerged as a valuable epidemiologic tool to detect the presence of pathogens and track disease trends within a community. WBE overcomes some limitations of traditional clinical disease surveillance as it uses pooled samples from the entire community, irrespective of health-seeking behaviors and symptomatic status of infected individuals. WBE has the potential to estimate the number of infections within a community by using a mass balance equation, however, it has yet to be assessed for accuracy. We hypothesized that the mass balance equation-based approach using measured SARS-CoV-2 wastewater concentrations can generate accurate prevalence estimates of COVID-19 within a community. This study encompassed wastewater sampling over a 53-week period during the COVID-19 pandemic in Gainesville, Florida, to assess the ability of the mass balance equation to generate accurate COVID-19 prevalence estimates. The SARS-CoV-2 wastewater concentration showed a significant linear association (Parameter estimate = 39.43, P value < 0.0001) with clinically reported COVID-19 cases. Overall, the mass balance equation produced accurate COVID-19 prevalence estimates with a median absolute error of 1.28%, as compared to the clinical reference group. Therefore, the mass balance equation applied to WBE is an effective tool for generating accurate community-level prevalence estimates of COVID-19 to improve community surveillance.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Wastewater , Prevalence , RNA, Viral
6.
PLoS One ; 17(11): e0277611, 2022.
Article in English | MEDLINE | ID: mdl-36395323

ABSTRACT

BACKGROUND: Children with congenital heart defects have an increased risk of neurodevelopmental disability. The impact of environmental chemical exposures during daily life on neurodevelopmental outcomes in toddlers with congenital heart defects is unknown. METHODS: This prospective study investigated the impacts of early childhood exposure to mixtures of environmental chemicals on neurodevelopmental outcomes after cardiac surgery. Outcomes were assessed at 18 months of age using The Bayley Scales of Infant and Toddler Development-III. Urinary concentrations of exposure biomarkers of pesticides, phenols, parabens, and phthalates, and blood levels of lead, mercury, and nicotine were measured at the same time point. Bayesian profile regression and weighted quantile sum regression were utilized to assess associations between mixtures of biomarkers and neurodevelopmental scores. RESULTS: One-hundred and forty infants were enrolled, and 110 (79%) returned at 18 months of age. Six biomarker exposure clusters were identified from the Bayesian profile regression analysis; and the pattern was driven by 15 of the 30 biomarkers, most notably 13 phthalate biomarkers. Children in the highest exposure cluster had significantly lower adjusted language scores by -9.41 points (95%CI: -17.2, -1.7) and adjusted motor scores by -4.9 points (-9.5, -0.4) compared to the lowest exposure. Weighted quantile sum regression modeling for the overall exposure-response relationship showed a significantly lower adjusted motor score (ß = -2.8 points [2.5th and 97.5th percentile: -6.0, -0.6]). The weighted quantile sum regression index weights for several phthalates, one paraben, and one phenol suggest their relevance for poorer neurodevelopmental outcomes. CONCLUSIONS: Like other children, infants with congenital heart defects are exposed to complex mixtures of environmental chemicals in daily life. Higher exposure biomarker concentrations were associated with significantly worse performance for language and motor skills in this population.


Subject(s)
Heart Defects, Congenital , Infant , Humans , Child, Preschool , Prospective Studies , Bayes Theorem , Heart Defects, Congenital/chemically induced , Heart Defects, Congenital/surgery , Parabens , Phenols , Biomarkers
7.
Toxics ; 10(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36422914

ABSTRACT

Height for age is an important and widely used population-level indicator of children's health. Morbidity trends show that stunting in young children is a significant public health concern. Recent studies point to environmental factors as an understudied area of child growth failure in Africa. Data on child measurements of height-for-age and confounders were obtained from fifteen waves of the Demographic and Health Surveys (DHS) for six countries in East Africa. Monthly ambient PM2.5 concentration data was retrieved from the Atmospheric Composition Analysis Group (ACAG) global surface PM2.5 estimates and spatially integrated with DHS data. Generalized additive models with linear and logistic regression were used to estimate the exposure-response relationship between prenatal PM2.5 and height-for-age and stunting among children under five in East Africa (EA). Fully adjusted models showed that for each 10 µg/m3 increase in PM2.5 concentration there is a 0.069 (CI: 0.097, 0.041) standard deviation decrease in height-for-age and 9% higher odds of being stunted. Our study identified ambient PM2.5 as an environmental risk factor for lower height-for-age among young children in EA. This underscores the need to address emissions of harmful air pollutants in EA as adverse health effects are attributable to ambient PM2.5 air pollution.

8.
Respir Res ; 23(1): 177, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35780155

ABSTRACT

BACKGROUND: Respiratory infections such as influenza account for significant global mortality each year. Generating lipid profiles is a novel and emerging research approach that may provide new insights regarding the development and progression of priority respiratory infections. We hypothesized that select clusters of lipids in human sputum would be associated with specific viral infections (Influenza (H1N1, H3N2) or Rhinovirus). METHODS: Lipid identification and semi-quantitation was determined with liquid chromatography and high-resolution mass spectrometry in induced sputum from individuals with confirmed respiratory infections (influenza (H1N1, H3N2) or rhinovirus). Clusters of lipid species and associations between lipid profiles and the type of respiratory viral agent was determined using Bayesian profile regression and multinomial logistic regression. RESULTS: More than 600 lipid compounds were identified across the sputum samples with the most abundant lipid classes identified as triglycerides (TG), phosphatidylethanolamines (PE), phosphatidylcholines (PC), Sphingomyelins (SM), ether-PC, and ether-PE. A total of 12 lipid species were significantly different when stratified by infection type and included acylcarnitine (AcCar) (10:1, 16:1, 18:2), diacylglycerols (DG) (16:0_18:0, 18:0_18:0), Lysophosphatidylcholine (LPC) (12:0, 20:5), PE (18:0_18:0), and TG (14:1_16:0_18:2, 15:0_17:0_19:0, 16:0_17:0_18:0, 19:0_19:0_19:0). Cluster analysis yielded three clusters of lipid profiles that were driven by just 10 lipid species (TGs and DGs). Cluster 1 had the highest levels of each lipid species and the highest prevalence of influenza A H3 infection (56%, n = 5) whereas cluster 3 had lower levels of each lipid species and the highest prevalence of rhinovirus (60%; n = 6). Using cluster 3 as the reference group, the crude odds of influenza A H3 infection compared to rhinovirus in cluster 1 was significantly (p = 0.047) higher (OR = 15.00 [95% CI: 1.03, 218.29]). After adjustment for confounders (smoking status and pulmonary comorbidities), the odds ratio (OR) became only marginally significant (p = 0.099), but the magnitude of the effect estimate was similar (OR = 16.00 [0.59, 433.03]). CONCLUSIONS: In this study, human sputum lipid profiles were shown to be associated with distinct types of viral infection. Better understanding the relationship between respiratory infections of global importance and lipids contributes to advancing knowledge of pathogenesis of infections including identifying populations with increased susceptibility and developing effective therapeutics and biomarkers of health status.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Pneumonia , Respiratory Tract Infections , Virus Diseases , Bayes Theorem , Humans , Influenza A Virus, H3N2 Subtype , Lysophosphatidylcholines , Phosphatidylcholines , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Rhinovirus , Sputum , Virus Diseases/diagnosis , Virus Diseases/epidemiology
9.
Environ Res ; 214(Pt 1): 113738, 2022 11.
Article in English | MEDLINE | ID: mdl-35772504

ABSTRACT

BACKGROUND: There is currently a scarcity of air pollution epidemiologic data from low- and middle-income countries (LMICs) due to the lack of air quality monitoring in these countries. Additionally, there is limited capacity to assess the health effects of wildfire smoke events in wildfire-prone regions like Brazil's Amazon Basin. Emerging low-cost air quality sensors may have the potential to address these gaps. OBJECTIVES: We investigated the potential of PurpleAir PM2.5 sensors for conducting air pollution epidemiologic research leveraging the United States Environmental Protection Agency's United States-wide correction formula for ambient PM2.5. METHODS: We obtained raw (uncorrected) PM2.5 concentration and humidity data from a PurpleAir sensor in Rio Branco, Brazil, between 2018 and 2019. Humidity measurements from the PurpleAir sensor were used to correct the PM2.5 concentrations. We established the relationship between ambient PM2.5 (corrected and uncorrected) and daily all-cause respiratory hospitalization in Rio Branco, Brazil, using generalized additive models (GAM) and distributed lag non-linear models (DLNM). We used linear regression to assess the relationship between daily PM2.5 concentrations and wildfire reports in Rio Branco during the wildfire seasons of 2018 and 2019. RESULTS: We observed increases in daily respiratory hospitalizations of 5.4% (95%CI: 0.8%, 10.1%) for a 2-day lag and 5.8% (1.5%, 10.2%) for 3-day lag, per 10 µg/m3 PM2.5 (corrected values). The effect estimates were attenuated when the uncorrected PM2.5 data was used. The number of reported wildfires explained 10% of daily PM2.5 concentrations during the wildfire season. DISCUSSION: Exposure-response relationships estimated using corrected low-cost air quality sensor data were comparable with relationships estimated using a validated air quality modeling approach. This suggests that correcting low-cost PM2.5 sensor data may mitigate bias attenuation in air pollution epidemiologic studies. Low-cost sensor PM2.5 data could also predict the air quality impacts of wildfires in Brazil's Amazon Basin.


Subject(s)
Air Pollutants , Air Pollution , Brazil , Epidemiologic Studies , Hospitalization , Humans , Particulate Matter , United States
10.
Chemosphere ; 301: 134478, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35367496

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) constitute a class of highly stable and extensively manufactured anthropogenic chemicals that have been linked to a variety of adverse health effects in humans and wildlife. These compounds are ubiquitously distributed in the environment and have been measured in aquatic systems globally. However, there are limited data on longitudinal comprehensive assessments of PFAS profiles within sensitive aquatic ecosystems. Surface water samples were collected from the Indian River Lagoon (IRL) and the Atlantic coast within Brevard County (BC), FL in December of 2019 (n = 57) and again from corresponding locations in February of 2021 (n = 40). Samples were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to determine the occurrence, concentration, and distribution of 92 PFAS. No significant difference in total PFAS concentrations were identified between samples collected in 2019 (87 ng/L) and those collected in 2021 (77 ng/L). However, comparisons of PFAS among four natural sub-regions within Brevard County revealed site- and regional-specific differences. The Banana River exhibited the greatest concentration of total PFAS, followed by the southern Indian River, the northern Indian River, and then the Atlantic coast. Six distinct PFAS profiles were identified with the novel application of multivariate statistical cluster analysis, which may be useful for identifying potential sources of PFAS. Elevated total PFAS and unique compound mixtures identified in the Banana River are most likely a result of industrial discharge and extensive historical use of aqueous film-forming foams (AFFF). The environmental persistence of PFAS threatens key ecosystem services and the ecological homeostasis of the Indian River Lagoon - the most biologically diverse estuary in North America. Brevard County offers a unique model site that may be used to investigate potential exposure and health implications for wildlife and adjacent coastal communities, which could be extrapolated to better understand and manage other critical coastal systems.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Ecosystem , Fluorocarbons/analysis , Humans , Rivers , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis
11.
Indoor Air ; 32(1): e12963, 2022 01.
Article in English | MEDLINE | ID: mdl-34837417

ABSTRACT

To date, only three studies have investigated the association of household air pollution (HAP) exposure with pregnancy disorders. The ameliorating role of diet and nutrition in the association has never been explored. We conducted a cross-sectional study among 799 mothers who had recently given singleton birth in the Cape Coast Metropolis, Ghana. Structured questionnaire and semi-quantitative food frequency questionnaire were used to assess HAP exposure (from use of biomass fuels for cooking and garbage burning at home) and vitamin D (vitD) intake, respectively. Multivariable binary logistic regression was used to investigate the association between HAP exposure and pregnancy disorders. HAP exposure due to cooking with biomass fuels and garbage burning at home was associated with two fold (AOR = 2.15; 95% confidence interval [CI]: 1.05, 4.43) and six fold (AOR = 6.35; 95% CI: 2.43, 16.58) increased odds of hypertensive disorders of pregnancy (HDP). For gestational diabetes (GDM), the increased odds were two folds for both exposures but the 95% CI included the null value. Stove stacking was also associated with two folds increased odds of GDM (AOR = 1.83; 95% CI: 0.91, 3.68). In stratified analysis, the odds of HDP and GDM associated with biomass fuels use decreased with increasing vitD intake. All the interaction p values were, however, greater than 0.05. We provide the first evidence on the ameliorating role of vitD intake on the effect of HAP exposure on pregnancy disorders. In LMICs where solid fuel use and garbage burning at home is widespread, health workers should advise mothers during antenatal care visits to increase intake of vitamin D rich foods.


Subject(s)
Air Pollution, Indoor , Vitamin D , Air Pollution , Air Pollution, Indoor/analysis , Cooking , Cross-Sectional Studies , Female , Humans , Pregnancy
12.
Environ Res ; 208: 112496, 2022 05 15.
Article in English | MEDLINE | ID: mdl-34902379

ABSTRACT

Wastewater-based epidemiology has been used to measure SARS-CoV-2 prevalence in cities worldwide as an indicator of community health, however, few longitudinal studies have followed SARS-CoV-2 in wastewater in small communities from the start of the pandemic or evaluated the influence of tourism on viral loads. Therefore the objective of this study was to use measurements of SARS-CoV-2 in wastewater to monitor viral trends and variants in a small island community over a twelve-month period beginning May 1, 2020, before the community re-opened to tourists. Wastewater samples were collected weekly and analyzed to detect and quantify SARS-CoV-2 genome copies. Sanger sequencing was used to determine genome sequences from total RNA extracted from wastewater samples positive for SARS-CoV-2. Visitor data was collected from the local Chamber of Commerce. We performed Poisson and linear regression to determine if visitors to the Cedar Key Chamber of Commerce were positively associated with SARS-CoV-2-positive wastewater samples and the concentration of SARS-CoV-2 RNA. Results indicated that weekly wastewater samples were negative for SARS-CoV-2 until mid-July when positive samples were recorded in four of five consecutive weeks. Additional positive results were recorded in November and December 2020, as well as January, March, and April 2021. Tourism data revealed that the SARS-CoV-2 RNA concentration in wastewater increased by 1.06 Log10 genomic copies/L per 100 tourists weekly. Sequencing from six positive wastewater samples yielded two complete sequences of SARS-CoV-2, two overlapping sequences, and two low yield sequences. They show arrival of a new variant SARS-CoV-2 in January 2021. Our results demonstrate the utility of wastewater surveillance for SARS-CoV-2 in a small community. Wastewater surveillance and viral genome sequencing suggest that population mobility likely plays an important role in the introduction and circulation of SARS-CoV-2 variants among communities experiencing high tourism and who have a small population size.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , COVID-19/epidemiology , Humans , Prevalence , RNA, Viral/genetics , SARS-CoV-2/genetics , Tourism , Wastewater
13.
Environ Res ; 199: 111352, 2021 08.
Article in English | MEDLINE | ID: mdl-34043968

ABSTRACT

The application of land use regression (LUR) modeling for estimating air pollution exposure has been used only rarely in sub-Saharan Africa (SSA). This is generally due to a lack of air quality monitoring networks in the region. Low cost air quality sensors developed locally in sub-Saharan Africa presents a sustainable operating mechanism that may help generate the air monitoring data needed for exposure estimation of air pollution with LUR models. The primary objective of our study is to investigate whether a network of locally developed low-cost air quality sensors can be used in LUR modeling for accurately predicting monthly ambient fine particulate matter (PM2.5) air pollution in urban areas of central and eastern Uganda. Secondarily, we aimed to explore whether the application of machine learning (ML) can improve LUR predictions compared to ordinary least squares (OLS) regression. We used data for the entire year of 2020 from a network of 23 PM2.5 low-cost sensors located in urban municipalities of eastern and central Uganda. Between January 1, 2020 and December 31, 2020, these sensors collected highly time-resolved measurement data of PM2.5 air concentrations. We used monthly-averaged PM2.5 concentration data for LUR prediction modeling of monthly PM2.5 concentrations. We used eight different ML base-learner algorithms as well as ensemble modeling. We applied 5-fold cross validation (80% training/20% test random splits) to evaluate the models with resampling and Root mean squared error (RMSE). The relative explanatory power and accuracy of the ML algorithms were evaluated by comparing coefficient of determination (R2) and RMSE, using OLS as the reference approach. The overall average PM2.5 concentration during the study period was 52.22 µg/m3 (IQR: 38.11, 62.84 µg/m3)-well above World Health Organization PM2.5 ambient air guidelines. From the base-learner and ensemble models, RMSE and R2 values ranged between 7.65 µg/m3 - 16.85 µg/m3 and 0.24-0.84, respectively. Extreme gradient boosting (xgbTree) performed best out of the base learner algorithms (R2 = 0.84; RMSE = 7.65 µg/m3). Model performance from ensemble modeling with Lasso and Elastic-Net Regularized Generalized Linear Models (glmnet) did not outperform xgbTree, but prediction performance was comparable to that of xgbTree. The most important temporal and spatial predictors of monthly PM2.5 levels were monthly precipitation, percent of the population using solid fuels for cooking, distance to Lake Victoria, and greenspace (NDVI) within a 500-m buffer of air monitors. In conclusion, data from locally developed low-cost PM sensors provide evidence that they can be used for spatio-temporal prediction modeling of air pollution exposures in Uganda. Moreover, the non-parametric ML and ensemble approaches to LUR modeling clearly outperformed OLS regression algorithm for the prediction of monthly PM2.5 concentrations. Deploying low-cost air quality sensors in concert with implementation of data quality control measures, can help address the critical need for expanding and improving air quality monitoring in resource-constrained settings of sub-Saharan Africa. These low-cost sensors, in conjunction with non-parametric ML algorithms, may provide a rapid path forward for PM2.5 exposure assessment and to spur air pollution epidemiology research in the region.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Cities , Environmental Monitoring , Machine Learning , Particulate Matter/analysis , Uganda
14.
Article in English | MEDLINE | ID: mdl-33924663

ABSTRACT

The agricultural crop sector in the United States depends on migrant, seasonal, and immigrant farmworkers. As an ethnic minority group in the U.S. with little access to health care and a high level of poverty, farmworkers face a combination of adverse living and workplace conditions, such as exposure to high levels of air pollution, that can place them at a higher risk for adverse health outcomes including respiratory infections. This narrative review summarizes peer-reviewed original epidemiology research articles (2000-2020) focused on respirable dust exposures in the workplace and respiratory illnesses among farmworkers. We found studies (n = 12) that assessed both air pollution and respiratory illnesses in farmworkers. Results showed that various air pollutants and respiratory illnesses have been assessed using appropriate methods (e.g., personal filter samplers and spirometry) and a consistent pattern of increased respiratory illness in relation to agricultural dust exposure. There were several gaps in the literature; most notably, no study coupled occupational air exposure and respiratory infection among migrant, seasonal and immigrant farmworkers in the United States. This review provides an important update to the literature regarding recent epidemiological findings on the links between occupational air pollution exposures and respiratory health among vulnerable farmworker populations.


Subject(s)
Air Pollution , Occupational Exposure , Occupational Health , Transients and Migrants , Air Pollution/adverse effects , Ethnicity , Farmers , Humans , Minority Groups , Occupational Exposure/analysis , United States/epidemiology
15.
Article in English | MEDLINE | ID: mdl-33440892

ABSTRACT

Air pollution is a major contributor to human morbidity and mortality, potentially exacerbated by COVID-19, and a threat to planetary health. Participatory research, with a structural violence framework, illuminates exposure inequities and refines mitigation strategies. Home to profitable oil and shipping industries, several census tracts in Richmond, CA are among the most heavily impacted by aggregate burdens statewide. Formally trained researchers from the Center for Environmental Research and Children's Health (CERCH) partnered with the RYSE youth justice center to conduct youth participatory action research on air quality justice. Staff engaged five youth researchers in: (1) collaborative research using a network of passive air monitors to quantify neighborhood disparities in nitrogen dioxide (NO2) and sulfur dioxide (SO2), noise pollution and community risk factors; (2) training in environmental health literacy and professional development; and (3) interpretation of findings, community outreach and advocacy. Inequities in ambient NO2, but not SO2, were observed. Census tracts with higher Black populations had the highest NO2. Proximity to railroads and major roadways were associated with higher NO2. Greenspace was associated with lower NO2, suggesting investment may be conducive to improved air quality, among many additional benefits. Youth improved in measures of empowerment, and advanced community education via workshops, Photovoice, video, and "zines".


Subject(s)
Air Pollutants , Air Pollution , Community Participation , Health Status Disparities , Adolescent , Air Pollution/analysis , COVID-19 , California , Child , Environmental Exposure/analysis , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Social Justice , Sulfur Dioxide/analysis
16.
Environ Res ; 196: 110374, 2021 05.
Article in English | MEDLINE | ID: mdl-33131682

ABSTRACT

Admissions of newborn infants into Neonatal Intensive Care Units (NICU) has increased in the US over the last decade yet the role of environmental exposures as a risk factor for NICU admissions is under studied. Our study aims to determine the ecologic association between acute and intermediate ambient PM2.5 exposure durations and rates of NICU admissions, and to explore whether this association differs by area-level social stressors and meteorological factors. We conducted an ecologic time-series analysis of singleton neonates (N = 1,027,797) born in Florida hospitals between December 26, 2011 to April 30, 2019. We used electronic medical records (EMRs) in the OneFlorida Data Trust and included infants with a ZIP code in a Metropolitan Statistical Areas (MSA) and excluded extreme preterm births (<24wks gestation). The study outcome is the number of daily NICU admission at 28 days old or younger for each ZIP code in the study area. The exposures of interest are average same day, 1- and 2-day lags, and 1-3 weeks ambient PM2.5 concentration at the ZIP code-level estimated using inverse distance weighting (IDW) for each day of the study period. We used a zero-inflated Poisson regression mixed effects models to estimate adjusted associations between acute and intermediate PM2.5 exposure durations and NICU admissions rates. NICU admissions rates increased over time during the study period. Ambient 7-day average PM2.5 concentrations was significantly associated with incidence of NICU admissions, with an interquartile range (IQR = 2.37 µg/m3) increase associated with a 1.4% (95% CI: 0.4%, 2.4%) higher adjusted incidence of daily NICU admissions. No other exposure duration metrics showed a significant association with daily NICU admission rates. The magnitude of the association between PM2.5 7-day average concentrations with NICU admissions was significantly (p < 0.05) higher among ZIP codes with higher proportions of non-Hispanic Blacks, ZIP codes with household incomes in the lowest quartile, and on days with higher relative humidity. Our data shows a positive relationship between acute (7-day average) PM2.5 concentrations and daily NICU admissions in Metropolitan Statistical Areas of Florida. The observed associations were stronger in socioeconomically disadvantaged areas, areas with higher proportions with non-Hispanic Blacks, and on days with higher relative humidity. Further research is warranted to study other air pollutants and multipollutant effects and identify health conditions that are driving these associations with NICU admissions.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter/analysis , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/statistics & numerical data , Female , Florida/epidemiology , Humans , Infant , Infant, Newborn , Intensive Care Units, Neonatal , Pregnancy
17.
Environ Resour Econ (Dordr) ; 76(4): 611-634, 2020.
Article in English | MEDLINE | ID: mdl-32836855

ABSTRACT

Long-term exposure to ambient air pollutant concentrations is known to cause chronic lung inflammation, a condition that may promote increased severity of COVID-19 syndrome caused by the novel coronavirus (SARS-CoV-2). In this paper, we empirically investigate the ecologic association between long-term concentrations of area-level fine particulate matter (PM2.5) and excess deaths in the first quarter of 2020 in municipalities of Northern Italy. The study accounts for potentially spatial confounding factors related to urbanization that may have influenced the spreading of SARS-CoV-2 and related COVID-19 mortality. Our epidemiological analysis uses geographical information (e.g., municipalities) and negative binomial regression to assess whether both ambient PM2.5 concentration and excess mortality have a similar spatial distribution. Our analysis suggests a positive association of ambient PM2.5 concentration on excess mortality in Northern Italy related to the COVID-19 epidemic. Our estimates suggest that a one-unit increase in PM2.5 concentration (µg/m3) is associated with a 9% (95% confidence interval: 6-12%) increase in COVID-19 related mortality.

20.
Clin Epigenetics ; 10: 61, 2018.
Article in English | MEDLINE | ID: mdl-29760810

ABSTRACT

Background: Maternal social environmental stressors during pregnancy are associated with adverse birth and child developmental outcomes, and epigenetics has been proposed as a possible mechanism for such relationships. Methods: In a Mexican-American birth cohort of 241 maternal-infant pairs, cord blood samples were measured for repeat element DNA methylation (LINE-1 and Alu). Linear mixed effects regression was used to model associations between indicators of the social environment (low household income and education, neighborhood-level characteristics) and repeat element methylation. Results from a dietary questionnaire were also used to assess the interaction between maternal diet quality and the social environment on markers of repeat element DNA methylation. Results: After adjusting for confounders, living in the most impoverished neighborhoods was associated with higher cord blood LINE-1 methylation (ß = 0.78, 95%CI 0.06, 1.50, p = 0.03). No other neighborhood-, household-, or individual-level socioeconomic indicators were significantly associated with repeat element methylation. We observed a statistical trend showing that positive association between neighborhood poverty and LINE-1 methylation was strongest in cord blood of infants whose mothers reported better diet quality during pregnancy (pinteraction = 0.12). Conclusion: Our findings indicate a small yet unexpected positive association between neighborhood-level poverty during pregnancy and methylation of repetitive element DNA in infant cord blood and that this association is possibly modified by diet quality during pregnancy. However, our null findings for other adverse SES indicators do not provide strong evidence for an adverse association between early-life socioeconomic environment and repeat element DNA methylation in infants.


Subject(s)
Alu Elements , DNA Methylation , Long Interspersed Nucleotide Elements , Mexican Americans/genetics , Pregnancy/genetics , Cohort Studies , Epigenesis, Genetic , Female , Humans , Infant, Newborn , Nutrition Surveys , Social Class
SELECTION OF CITATIONS
SEARCH DETAIL
...