Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 44(1-2): 35-43, 2023 01.
Article in English | MEDLINE | ID: mdl-35699059

ABSTRACT

The feasibility of on-capillary derivatization of saccharides by aromatic amine-based fluorescent labeling agents was tested. To avoid the problematic evolution of gaseous hydrogen cyanide, the Schiff base reduction by sodium cyanoborohydride, as the second step of the standard reductive amination protocol, was omitted. Glucose was used as a model analyte and 7-amino-1,3-naphthalenedisulfonic acid as the labeling agent. Our experiments showed that the direct reaction of the saccharide with the labeling agent in 2.5-M acetic acid yields a labeled product that is sufficiently stable to be separated from the labeling agent in 20-mM phosphate buffer, pH 3.5, and detected using UV detection. The glucose and label zones were introduced separately into the capillary and mixed using a negative voltage. Mixing voltage, its duration, the concentration of acetic acid in the reaction zone, and the waiting time between mixing and separation were optimized. To show the applicability of the procedure to a broader range of analytes, a mixture of different types of saccharides, that is, xylose (pentose), fucose (hexose), glucose (hexose), N-acetylglucosamine (N-acetylaminosaccharide), and lactose (disaccharide), was subjected to derivatization and analysis under the optimal conditions. The linearity and repeatability of the process were evaluated as critical parameters for its analytical applications. Six-point calibration dependences in the 1-50 mM range showed excellent determination coefficients of 0.9992 or higher for all five saccharides tested. The repeatability of the labeled saccharide peak areas was between 2.2% and 4.3%.


Subject(s)
Acids , Glucose , Coloring Agents , Electrophoresis, Capillary/methods , Disaccharides
2.
Microorganisms ; 10(7)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35889067

ABSTRACT

Pythium oligandrum, strain M1, is a soil oomycete successfully used as a biological control agent (BCA), protecting plants against fungal, yeast, and oomycete pathogens through mycoparasitism and elicitor-dependent plant priming. The not yet described Pythium strains, X42 and 00X48, have shown potential as BCAs given the high activity of their secreted proteases, endoglycosidases, and tryptamine. Here, Solanum lycopersicum L. cv. Micro-Tom seeds were coated with Pythium strains, and seedlings were exposed to fungal pathogens, either Alternaria brassicicola or Verticillium albo-atrum. The effects of both infection and seed-coating on plant metabolism were assessed by determining the activity and isoforms of antioxidant enzymes and endoglycosidases and the content of tryptamine, amino acids, and heat shock proteins. Dual culture competition testing and microscopy analysis confirmed mycoparasitism in all three Pythium strains. In turn, seed treatment significantly increased the total free amino acid content, changing their abundance in both non-infected and infected plants. In response to pathogens, plant Hsp70 and Hsp90 isoform levels also varied among Pythium strains, most likely as a strategy for priming the plant against infection. Overall, our results show in vitro mycoparasitism between Pythium strains and fungal pathogens and in planta involvement of heat shock proteins in priming.

3.
Monatsh Chem ; 153(9): 659-686, 2022.
Article in English | MEDLINE | ID: mdl-35754790

ABSTRACT

Glycosylation is one of the most significant and abundant post-translational modifications in cells. Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycomic and glycoproteomic analysis is highly challenging because of the large diversity of structures, low abundance, site-specific heterogeneity, and poor ionization efficiency of glycans and glycopeptides in mass spectrometry (MS). MS is a key tool for characterization of glycans and glycopeptides. However, MS alone does not always provide full structural and quantitative information for many reasons, and thus MS is combined with some separation technique. This review focuses on the role of separation techniques used in glycomic and glycoproteomic analyses, liquid chromatography and capillary electrophoresis. The most important separation conditions and results are presented and discussed.

4.
Electrophoresis ; 43(15): 1638-1646, 2022 08.
Article in English | MEDLINE | ID: mdl-35616901

ABSTRACT

A method for purity control of newly synthesized lactic acid-based liquid crystals has been developed. The electrokinetic chromatography proved to be suitable for the separation of these electroneutral substances from their impurities. The separations were performed in an acidic acetonitrile-based background electrolyte (BGE) with a pseudostationary phase formed by a cationic surfactant. During the optimization step, appropriate concentrations of cetyltrimethylammonium bromide, acetic acid, and water were seeked. In the optimized method, separations were carried out in acetonitrile with 1-mol/L acetic acid, 80-mmol/L cetyltrimethylammonium bromide, and 6% (v/v) water. Interesting positive effects of a small water content in the BGE on electroosmotic flow and resolution of liquid crystal substances from their impurities were observed and discussed. Samples of five liquid crystal substances, both pure and containing impurities from synthesis, were analyzed. The identification of analytes was based on a comparison of relative migration times related to the migration time of mesityl oxide. For all five samples, impurities were separated from the liquid crystals and the method thus showed its viability. To the best of our knowledge, this method is used for the first time for the purity control of newly synthesized liquid crystals. This method can be used to confirm or complement the results obtained by commonly used high-performance liquid chromatography and supercritical fluid chromatography methods. Furthermore, the electrokinetic chromatography method requires very small amounts of sample, solvents, and buffer constituents. Overall, its operational costs are significantly lower.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary , Chromatography, Supercritical Fluid , Liquid Crystals , Acetonitriles/chemistry , Cetrimonium , Chromatography, Micellar Electrokinetic Capillary/methods , Electrolytes , Water/chemistry
5.
Microorganisms ; 8(10)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992822

ABSTRACT

Pythium oligandrum is a unique biological control agent. This soil oomycete not only acts as a mycoparasite, but also interacts with plant roots and stimulates plant defense response via specific elicitors. In addition, P. oligandrum can synthetize auxin precursors and stimulate plant growth. We analyzed the secretomes and biochemical properties of eleven Pythium isolates to find a novel and effective strain with advantageous features for plants. Our results showed that even closely related P. oligandrum isolates significantly differ in the content of compounds secreted into the medium, and that all strains secrete proteins, amino acids, tryptamine, phenolics, and hydrolytic enzymes capable of degrading cell walls (endo-ß-1,3-glucanase, chitinase, and cellulase), exoglycosidases (especially ß-glucosidase), proteases, and phosphatases. The most different strain was identified as a not yet described Pythium species. The changes in metabolism of Brassica napus plants grown from seeds coated with the tested Pythium spp. were characterized. Enhanced levels of jasmonates, ethylene precursor, and salicylic acid may indicate better resistance to a wide variety of pathogens. Glucosinolates, as defense compounds against insects and herbivores, were enhanced in young plants. Altogether, P. oligandrum strains varied in their life strategies, and either they could perform equally as plant growth promoters and mycoparasites or they had developed one of these strategies better.

SELECTION OF CITATIONS
SEARCH DETAIL
...