Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int Microbiol ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38401003

ABSTRACT

The phytopathogenic fungus Ustilago maydis causes corn smut by suppressing host plant defenses, including the oxidative burst response. While many studies have investigated how U. maydis responds to oxidative stress during infection, the consequences of heightened resistance to oxidative stress on virulence remain understudied. This study aimed to identify the effects on virulence in U. maydis strains exhibiting enhanced resistance to hydrogen peroxide (H2O2).To achieve this, we exposed U. maydis SG200 to 20 escalating H2O2 shocks, resulting in an adapted strain resistant to concentrations as high as 60 mM of H2O2, a lethal dose for the initial strain. Genetic analysis of the adapted strain revealed five nucleotide substitutions, two minor copy number variants, and a large amplification event on chromosome nine (1-149 kb) encompassing the sole catalase gene. Overexpressing catalase increased resistance to H2O2; however, this resistance was lower than that observed in the adapted strain. Additionally, virulence was reduced in both strains with enhanced H2O2 resistance.In summary, enhanced H2O2 resistance, achieved through either continuous exposure to the oxidative agent or through catalase overexpression, decreased virulence. This suggests that the response to the oxidative stress burst in U. maydis is optimal and that increasing the resistance to H2O2 does not translate into increased virulence. These findings illuminate the intricate relationship between oxidative stress resistance and virulence in U. maydis, offering insights into its infection mechanisms.

2.
Microbiol Resour Announc ; 11(3): e0115421, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35234491

ABSTRACT

The ascomycetous yeast Kazachstania humilis is an active species in backslopped sourdough and in the spontaneous fermentation of several traditional foods and beverages. Here, we report the draft genome sequence of a K. humilis strain isolated from agave must from a traditional distillery in Mexico.

3.
Fungal Genet Biol ; 85: 71-82, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26563416

ABSTRACT

Branched chain amino acid aminotransferases (BCATs) catalyze the last step of the biosynthesis and the first step of the catabolism of branched chain amino acids. In Saccharomyces cerevisiae, BCATs are encoded by the ScBAT1 and ScBAT2 paralogous genes. Analysis of Lachancea kluyveri genome sequence, allowed the identification of the LkBAT1 locus, which could presumably encode a BCAT. A second unlinked locus (LkBAT1bis), exhibiting sequence similarity to LkBAT1 was also identified. To determine the function of these putative BCATs, L. kluyveri mutant strains lacking LkBAT1, LkBAT1bis or both genes were generated and tested for VIL metabolism. LkBat1 displayed branched chain aminotransferase activity and is required for VIL biosynthesis and catabolism. However, Lkbat1Δ mutant is a valine and isoleucine auxotroph and a leucine bradytroph indicating that L. kluyveri harbors an alternative enzyme(s) involved in leucine biosynthesis. Additionally, heterologous reciprocal gene complementation between S. cerevisiae and L. kluyveri orthologous LkBAT1, ScBAT1 and ScBAT2 genes, confirmed that the mitochondrial LkBat1 functions as BCAT in S. cerevisiae, restoring wild type phenotype to the ScBAT1 null mutant. Conversely, LkBAT1bis did not display a role in BCAAs metabolism. However, when ethanol was used as carbon source, deletion of LkBAT1bis in an Lkbat1Δ null strain resulted in an extended 'lag' growth phase, pointing to a potential function of LkBAT1 and LkBAT1bis in the aerobic metabolism of L. kluyveri. These results confirm the BCAT function of LkBAT1 in L. kluyveri, and further support the proposition that the BCAT function in ancestral-type yeasts has been distributed in the two paralogous genes present in S. cerevisiae.


Subject(s)
Saccharomycetales/enzymology , Transaminases/metabolism , Amino Acids, Branched-Chain/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Isoleucine/genetics , Isoleucine/metabolism , Leucine/genetics , Leucine/metabolism , Mitochondria/metabolism , Saccharomycetales/genetics , Transaminases/genetics , Valine/genetics , Valine/metabolism
4.
Nat Genet ; 40(5): 676-81, 2008 May.
Article in English | MEDLINE | ID: mdl-18408719

ABSTRACT

Duplicate genes from the whole-genome duplication (WGD) in yeast are often dispensable--removing one copy has little or no phenotypic consequence. It is unknown, however, whether such dispensability reflects insignificance of the ancestral function or compensation from paralogs. Here, using precise competition-based measurements of the fitness cost of single and double deletions, we estimate the exposed fitness contribution of WGD duplicate genes in metabolism and bound the importance of their ancestral pre-duplication function. We find that the functional overlap between paralogs sufficiently explains the apparent dispensability of individual WGD genes. Furthermore, the lower bound on the fitness value of the ancestral function, which is estimated by the degree of synergistic epistasis, is at least as large as the average fitness cost of deleting single non-WGD genes. These results suggest that most metabolic functions encoded by WGD genes are important today and were also important at the time of duplication.


Subject(s)
Genes, Duplicate/physiology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Conserved Sequence , Epistasis, Genetic , Gene Deletion , Gene Duplication , Gene Expression Regulation, Fungal
5.
Res Microbiol ; 155(7): 514-21, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15313250

ABSTRACT

Association with a surface in a structure known as biofilm is the prevailing microbial lifestyle. Here we show the kinetics of biofilm formation of Escherichia coli W3110 in static cultures growing under aerobic or anaerobic conditions. Aerobically growing cells in LB medium started to produce detectable amounts of biofilm after 4 to 8 h, displaying maximal accumulation of formed biofilm at 24 h, corresponding to the onset of stationary phase. Then an abrupt reduction in the biomass of the biofilm was observed. This decrease was not prevented by external addition of fresh nutrients and coincided with the depletion of oxygen as measured by the enzymatic activity of the AdhE protein. No biofilm formation was detected in cultures grown anaerobically in LB or LB supplemented with nitrate, nitrite, DMSO or fumarate, even after 72 h of incubation, well inside the stationary phase, suggesting that under anaerobic growth conditions E. coli cannot form biofilms.


Subject(s)
Biofilms/growth & development , Escherichia coli/physiology , Anaerobiosis , Bacterial Adhesion , Biomass , Culture Media , Escherichia coli/drug effects , Escherichia coli/growth & development , Oxygen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...