Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 9(12): 1193-1198, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30613325

ABSTRACT

We report herein the design and synthesis of a series of orally active, liver-targeted hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitors for the treatment of anemia. In order to mitigate the concerns for potential systemic side effects, we pursued liver-targeted HIF-PHD inhibitors relying on uptake via organic anion transporting polypeptides (OATPs). Starting from a systemic HIF-PHD inhibitor (1), medicinal chemistry efforts directed toward reducing permeability and, at the same time, maintaining oral absorption led to the synthesis of an array of structurally diverse hydroxypyridone analogues. Compound 28a was chosen for further profiling, because of its excellent in vitro profile and liver selectivity. This compound significantly increased hemoglobin levels in rats, following chronic QD oral administration, and displayed selectivity over systemic effects.

2.
ACS Med Chem Lett ; 7(3): 261-5, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26985312

ABSTRACT

Using the collective body of known (CETP) inhibitors as inspiration for design, a structurally novel series of tetrahydroquinoxaline CETP inhibitors were discovered. An exemplar from this series, compound 5, displayed potent in vitro CETP inhibition and was efficacious in a transgenic cynomologus-CETP mouse HDL PD (pharmacodynamic) assay. However, an undesirable metabolic profile and chemical instability hampered further development of the series. A three-dimensional structure of tetrahydroquinoxaline inhibitor 6 was proposed from (1)H NMR structural studies, and this model was then used in silico for the design of a new class of compounds based upon an indoline scaffold. This work resulted in the discovery of compound 7, which displayed potent in vitro CETP inhibition, a favorable PK-PD profile relative to tetrahydroquinoxaline 5, and dose-dependent efficacy in the transgenic cynomologus-CETP mouse HDL PD assay.

3.
ACS Med Chem Lett ; 7(1): 111-6, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26819676

ABSTRACT

We have been focused on identifying a structurally different next generation inhibitor to MK-5172 (our Ns3/4a protease inhibitor currently under regulatory review), which would achieve superior pangenotypic activity with acceptable safety and pharmacokinetic profile. These efforts have led to the discovery of a novel class of HCV NS3/4a protease inhibitors containing a unique spirocyclic-proline structural motif. The design strategy involved a molecular-modeling based approach, and the optimization efforts on the series to obtain pan-genotypic coverage with good exposures on oral dosing. One of the key elements in this effort was the spirocyclization of the P2 quinoline group, which rigidified and constrained the binding conformation to provide a novel core. A second focus of the team was also to improve the activity against genotype 3a and the key mutant variants of genotype 1b. The rational application of structural chemistry with molecular modeling guided the design and optimization of the structure-activity relationships have resulted in the identification of the clinical candidate MK-8831 with excellent pan-genotypic activity and safety profile.

4.
J Med Chem ; 55(7): 2945-59, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22364528

ABSTRACT

The discovery of 1,3,8-triazaspiro[4.5]decane-2,4-diones (spirohydantoins) as a structural class of pan-inhibitors of the prolyl hydroxylase (PHD) family of enzymes for the treatment of anemia is described. The initial hit class, spirooxindoles, was identified through affinity selection mass spectrometry (AS-MS) and optimized for PHD2 inhibition and optimal PK/PD profile (short-acting PHDi inhibitors). 1,3,8-Triazaspiro[4.5]decane-2,4-diones (spirohydantoins) were optimized as an advanced lead class derived from the original spiroindole hit. A new set of general conditions for C-N coupling, developed using a high-throughput experimentation (HTE) technique, enabled a full SAR analysis of the spirohydantoins. This rapid and directed SAR exploration has resulted in the first reported examples of hydantoin derivatives with good PK in preclinical species. Potassium channel off-target activity (hERG) was successfully eliminated through the systematic introduction of acidic functionality to the molecular structure. Undesired upregulation of alanine aminotransferese (ALT) liver enzymes was mitigated and a robust on-/off-target margin was achieved. Spirohydantoins represent a class of highly efficacious, short-acting PHD1-3 inhibitors causing a robust erythropoietin (EPO) upregulation in vivo in multiple preclinical species. This profile deems spirohydantoins as attractive short-acting PHDi inhibitors with the potential for treatment of anemia.


Subject(s)
Anemia/drug therapy , Aza Compounds/chemical synthesis , Hydantoins/chemical synthesis , Hypoxia-Inducible Factor 1/metabolism , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Spiro Compounds/chemical synthesis , Animals , Aza Compounds/pharmacokinetics , Aza Compounds/pharmacology , Dogs , ERG1 Potassium Channel , Erythropoietin/biosynthesis , Ether-A-Go-Go Potassium Channels/metabolism , High-Throughput Screening Assays , Humans , Hydantoins/pharmacokinetics , Hydantoins/pharmacology , Hypoxia-Inducible Factor-Proline Dioxygenases , Indoles/chemical synthesis , Indoles/pharmacokinetics , Indoles/pharmacology , Liver/drug effects , Liver/enzymology , Macaca mulatta , Mass Spectrometry , Mice , Mice, Inbred C57BL , Protein Binding , Rats , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Structure-Activity Relationship , Up-Regulation
5.
Expert Opin Ther Pat ; 20(9): 1219-45, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20698812

ABSTRACT

IMPORTANCE OF THE FIELD: Anemia caused by chronic kidney disease and other chronic diseases or conditions can be managed by the treatment of biologic-based erythropoiesis stimulating agents (ESAs). Although these ESAs are successful in treating these anemic conditions, a small molecule-based anti-anemia medicine can potentially revolutionize the treatment of anemia by bringing convenience to patients and being cost effective. Prolyl hydroxylase domain-containing protein (PHD) inhibitors may provide an opportunity for the development of small molecule anti-anemia medicines. AREAS COVERED IN THIS REVIEW: This review covers efforts to target PHD enzymes for stabilization of hypoxia-inducible factor (HIF)-alpha subunits under normal oxygen levels as an attractive strategy to upregulate the expression of erythropoietin and genes involved in iron metabolism for the treatment of anemia. WHAT THE READER WILL GAIN: The reader will gain a brief summary of recent advances in HIF and PHD biology and a review of patents/patent applications on the subject of PHD inhibitors as HIF stabilizers for the treatment of anemia. TAKE HOME MESSAGE: Several classes of PHD enzyme inhibitors have been disclosed and several are currently in clinical trials for the development of small molecule-based therapeutics for the treatment of anemia.


Subject(s)
Anemia/drug therapy , Enzyme Inhibitors/pharmacology , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Anemia/physiopathology , Animals , Clinical Trials as Topic , Drug Delivery Systems , Drug Design , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Patents as Topic
6.
Bioorg Med Chem Lett ; 19(17): 5195-9, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19632830

ABSTRACT

Obesity is a chronic medical condition that is affecting large population throughout the world. CB1 as a target for treatment of obesity has been under intensive studies. Taranabant was discovered and then developed by Merck as the 1st generation CB1R inverse agonist. Reported here is part of our effort on the 2nd generation of CB1R inverse agonist from the acyclic amide scaffold. We replaced the oxygen linker in taranabant with nitrogen and prepared a series of amino heterocyclic analogs through a divergent synthesis. Although in general, the amine linker gave reduced binding affinity, potent and selective CB1R inverse agonist was identified from the amino heterocycle series. Molecular modeling was applied to study the binding of the amino heterocycle series at CB1 binding site. The in vitro metabolism of representative members was studied and only trace glucuronidation was found. Thus, it suggests that the right hand side of the molecule may not be the appropriate site for glucuronidation.


Subject(s)
Amides/chemistry , Anti-Obesity Agents/chemistry , Pyridines/chemistry , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Amides/chemical synthesis , Amides/pharmacology , Animals , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/pharmacology , Binding Sites , Computer Simulation , Drug Inverse Agonism , Humans , Microsomes, Liver/metabolism , Pyridines/pharmacology , Rats , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Recombinant Proteins/agonists , Recombinant Proteins/metabolism
9.
Org Lett ; 5(6): 785-7, 2003 Mar 20.
Article in English | MEDLINE | ID: mdl-12633071

ABSTRACT

[reaction: see text] Dimethyldioxirane oxidizes a 2,3-dihydo-1H-pyrrolo[1,2-a]indole unsubstituted at the C-9 position stereoselectively to form a hydroxy ketone with all the basic elements of the mitomycin ring system. On the other hand, a 2,3-dihydo-1H-pyrrolo[1,2-a]indole derivative substituted with an alkyl group at C-9 undergoes an oxidative ring expansion in the presence of dimethyldioxirane to give an FR900482 analogue.


Subject(s)
Mitomycin/chemical synthesis , Nucleic Acid Synthesis Inhibitors/chemical synthesis , Oxazines/chemical synthesis , Indicators and Reagents , Mitomycin/chemistry , Nucleic Acid Synthesis Inhibitors/chemistry , Oxazines/chemistry , Oxidation-Reduction , Stereoisomerism
10.
Drug Metab Dispos ; 30(7): 771-7, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12065435

ABSTRACT

The pharmacokinetics and oral bioavailability of (R)-N-[4-[2-[[2-hydroxy-2-(pyridin-3-yl)ethyl]amino]ethyl]phenyl]-4-[4-[4-(trifluoromethylphenyl]thiazol-2-yl]benzenesulfonamide (1), a 3-pyridyl thiazole benzenesulfonamide beta3-adrenergic receptor agonist, were investigated in rats, dogs, and monkeys. Systemic clearance was higher in rats (approximately 30 ml/min/kg) than in dogs and monkeys (both approximately 10 ml/min/kg), and oral bioavailability was 17, 27, and 4%, respectively. Since systemic clearance was 25 to 40% of hepatic blood flow in these species, hepatic extraction was expected to be low, and it was likely that oral bioavailability was limited either by absorption or a large first-pass effect in the gut. The absorption and excretion of 3H-labeled 1 were investigated in rats, and only 28% of the administered radioactivity was orally absorbed. Subsequently, the hepatic extraction of 1 was evaluated in rats (30%) and monkeys (47%). The low oral bioavailability in rats could be explained completely by poor oral absorption and hepatic first-pass metabolism; in monkeys, oral absorption was either less than in rats or first-pass extraction in the gut was greater. In an attempt to increase oral exposure, the pharmacokinetics and oral bioavailability of two potential prodrugs of 1, an N-ethyl [(R)-N-[4-[2-[ethyl[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[4-[4-(trifluoromethyl)phenyl]thiazol-2-yl]benzenesulfonamide; 2] and a morpholine derivative [(R)-N-[4-[2-[2-(3-pyridinyl)morpholin-4-yl]ethyl]phenyl]-4-[4-[4-(trifluoromethyl)- phenyl]thiazol-2-yl]benzenesulfonamide; 3], were evaluated in monkeys. Conversion to 1 was low (<3%) with both derivatives, and neither entity was an effective prodrug, but the oral bioavailability of 3 (56%) compared with 1 (4%) was significantly improved. The hypothesis that the increased oral bioavailability of 3 was due to a reduction in hydrogen bonding sites in the molecule led to the design of (R)-N-[4-[2-[[2-hydroxy-2-(pyridin-2-yl)ethyl]amino]ethyl]phenyl]-4-[4-(4-trifluoromethylphenyl)thiazol-2-yl]benzenesulfonamide (4), a 2-pyridyl beta3-adrenergic receptor agonist with improved oral bioavailability in rats and monkeys.


Subject(s)
Adrenergic beta-3 Receptor Agonists , Adrenergic beta-Agonists/pharmacokinetics , Sulfonamides/pharmacokinetics , Thiazoles/pharmacokinetics , Administration, Oral , Adrenergic beta-Agonists/chemistry , Adrenergic beta-Agonists/metabolism , Animals , Biological Availability , Dogs , Drug Evaluation, Preclinical , Macaca mulatta , Male , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, beta-3/physiology , Sulfonamides/chemistry , Sulfonamides/metabolism , Thiazoles/chemistry , Thiazoles/metabolism , Benzenesulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL
...