Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Alzheimers Dis ; 93(4): 1485-1508, 2023.
Article in English | MEDLINE | ID: mdl-37182890

ABSTRACT

BACKGROUND: Numerous mouse models of Alzheimer's disease (AD) are available, but all suffer from certain limitations, thus prompting further attempts. To date, no one model exists with amyloidopathy in a BALB/c strain. OBJECTIVE: To generate and characterize the C.B6/J-APPswe mouse, a model of AD with a mutated human gene for the amyloid-ß protein precursor (AßPP) inserted in a BALB/c background. METHODS: We analyzed five groups at different ages (3, 6, 9, 12, and 16-18 months) of C.B6/J-APPswe and wild-type mice (50% males and 50% females) for the main hallmarks of AD by western blotting, amyloid-ß (Aß) ELISA, immunocytochemistry, electrophysiology, and behavioral tests. RESULTS: The C.B6/J-APPswe mouse displays early AßPP and Aß production, late amyloid plaques formation, high level of Tau phosphorylation, synaptic deficits (reduced density and functional impairment due to a reduced post-synaptic responsiveness), neurodegeneration caused by apoptosis and necroptosis/necrosis, microgliosis, astrocytic abnormalities, and sex-related differences in explorative behavior, anxiety-like behavior, and spatial long-term and working memories. Social housing is feasible despite the intra-cage aggressiveness of male animals. CONCLUSION: C.B6/J-APPswe mice develop most of the distinctive features of AD and is a suitable model for the study of brain atrophy mechanisms and of the differences between males and females in the onset of cognitive/non-cognitive deficits.


Subject(s)
Alzheimer Disease , Female , Mice , Male , Humans , Animals , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Disease Models, Animal , Mice, Transgenic , Amyloid beta-Peptides/metabolism
2.
Neuropharmacology ; 231: 109513, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36948357

ABSTRACT

Epilepsy is at times a fatal disease. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality in people with intractable epilepsy and is defined by exclusion; non-accidental, non-toxicologic, and non-anatomic causes of death. While SUDEP often follows a bilateral tonic-clonic seizure, the mechanisms that ultimately lead to terminal apnea and then asystole remain elusive and there is a lack of preventative treatments. Based on the observation that discrete seizures lead to local and postictal vasoconstriction, resulting in hypoperfusion, hypoxia and behavioural disturbances in the forebrain we reasoned those similar mechanisms may play a role in SUDEP when seizures invade the brainstem. Here we tested this neurovascular-based hypothesis of SUDEP in awake non-anesthetized mice by pharmacologically preventing seizure-induced vasoconstriction, with cyclooxygenase-2 or L-type calcium channel antagonists. In both acute and chronic mouse models of seizure-induced premature mortality, ibuprofen and nicardipine extended life while systemic drug levels remained high enough to be effective. We also examined the potential role of spreading depolarization in the acute model of seizure-induced premature mortality. These data provide a proof-of-principle for the neurovascular hypothesis of SUDEP rather than spreading depolarization and the use of currently available drugs to prevent it.


Subject(s)
Epilepsy , Sudden Unexpected Death in Epilepsy , Mice , Animals , Sudden Unexpected Death in Epilepsy/prevention & control , Epilepsy/drug therapy , Epilepsy/complications , Seizures/prevention & control , Seizures/complications , Hypoxia/complications , Death, Sudden/etiology , Death, Sudden/prevention & control
3.
J Neurosci ; 43(4): 571-583, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36460464

ABSTRACT

Repeated seizures result in a persistent maladaptation of endocannabinoid (eCB) signaling, mediated part by anandamide signaling deficiency in the basolateral amygdala (BLA) that manifests as aberrant synaptic function and altered emotional behavior. Here, we determined the effect of repeated seizures (kindling) on 2-arachidonoylglycerol (2-AG) signaling on GABA transmission by directly measuring tonic and phasic eCB-mediated retrograde signaling in an in vitro BLA slice preparation from male rats. We report that both activity-dependent and muscarinic acetylcholine receptor (mAChR)-mediated depression of GABA synaptic transmission was reduced following repeated seizure activity. These effects were recapitulated in sham rats by preincubating slices with the 2-AG synthesizing enzyme inhibitor DO34. Conversely, preincubating slices with the 2-AG degrading enzyme inhibitor KML29 rescued activity-dependent 2-AG signaling, but not mAChR-mediated synaptic depression, over GABA transmission in kindled rats. These effects were not attributable to a change in cannabinoid type 1 (CB1) receptor sensitivity or altered 2-AG tonic signaling since the application of the highly selective CB1 receptor agonist CP55,940 provoked a similar reduction in GABA synaptic activity in both sham and kindled rats, while no effect of either DO34 or of the CB1 inverse agonist AM251 was observed on frequency and amplitude of spontaneous IPSCs in either sham or kindled rats. Collectively, these data provide evidence that repeated amygdala seizures persistently alter phasic 2-AG-mediated retrograde signaling at BLA GABAergic synapses, probably by impairing stimulus-dependent 2-AG synthesis/release, which contributes to the enduring aberrant synaptic plasticity associated with seizure activity.SIGNIFICANCE STATEMENT The plastic reorganization of endocannabinoid (eCB) signaling after seizures and during epileptogenesis may contribute to the negative neurobiological consequences associated with seizure activity. Therefore, a deeper understanding of the molecular basis underlying the pathologic long-term eCB signaling remodeling following seizure activity will be crucial to the development of novel therapies for epilepsy that not only target seizure activity, but, most importantly, the epileptogenesis and the comorbid conditions associated with epilepsy.


Subject(s)
Endocannabinoids , Epilepsy , Rats , Male , Animals , Endocannabinoids/pharmacology , Drug Inverse Agonism , Cannabinoid Receptor Agonists/pharmacology , Receptors, Cannabinoid , Enzyme Inhibitors/pharmacology , Seizures , gamma-Aminobutyric Acid , Receptor, Cannabinoid, CB1
4.
Neuropharmacology ; 202: 108859, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34710468

ABSTRACT

Nicotine, the addictive component of tobacco, has bivalent rewarding and aversive properties. Recently, the lateral habenula (LHb), a structure that controls ventral tegmental area (VTA) dopamine (DA) function, has attracted attention as it is potentially involved in the aversive properties of drugs of abuse. Hitherto, the LHb-modulation of nicotine-induced VTA neuronal activity in vivo is unknown. Using standard single-extracellular recording in anesthetized rats, we observed that intravenous administration of nicotine hydrogen tartrate (25-800 µg/kg i.v.) caused a dose-dependent increase in the basal firing rate of the LHb neurons of nicotine-naïve rats. This effect underwent complete desensitization in chronic nicotine (6 mg/kg/day for 14 days)-treated animals. As previously reported, acute nicotine induced an increase in the VTA DA neuronal firing rate. Interestingly, only neurons located medially (mVTA) but not laterally (latVTA) within the VTA were responsive to acute nicotine. This pattern of activation was reversed by chronic nicotine exposure which produced the selective increase of latVTA neuronal activity. Acute lesion of the LHb, similarly to chronic nicotine treatment, reversed the pattern of DA cell activation induced by acute nicotine increasing latVTA but not mVTA neuronal activity. Our evidence indicates that LHb plays an important role in mediating the effects of acute and chronic nicotine within the VTA by activating distinct subregional responses of DA neurons. The LHb/VTA modulation might be part of the neural substrate of nicotine aversive properties. By silencing the LHb chronic nicotine could shift the balance of motivational states toward the reward.


Subject(s)
Dopamine/physiology , Electroencephalography/methods , Habenula/drug effects , Habenula/physiopathology , Neural Pathways/drug effects , Neural Pathways/physiopathology , Nicotine/adverse effects , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/physiopathology , Animals , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/physiology , Dose-Response Relationship, Drug , Male , Nicotine/pharmacology , Rats, Sprague-Dawley , Reward
5.
Neuron ; 109(15): 2398-2403.e4, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34352214

ABSTRACT

The brain's endocannabinoid system is a powerful controller of neurotransmitter release, shaping synaptic communication under physiological and pathological conditions. However, our understanding of endocannabinoid signaling in vivo is limited by the inability to measure their changes at timescales commensurate with the high lability of lipid signals, leaving fundamental questions of whether, how, and which endocannabinoids fluctuate with neural activity unresolved. Using novel imaging approaches in awake behaving mice, we now demonstrate that the endocannabinoid 2-arachidonoylglycerol, not anandamide, is dynamically coupled to hippocampal neural activity with high spatiotemporal specificity. Furthermore, we show that seizures amplify the physiological endocannabinoid increase by orders of magnitude and drive the downstream synthesis of vasoactive prostaglandins that culminate in a prolonged stroke-like event. These results shed new light on normal and pathological endocannabinoid signaling in vivo.


Subject(s)
CA1 Region, Hippocampal/metabolism , Endocannabinoids/metabolism , Seizures/metabolism , Synaptic Transmission/physiology , Animals , Mice , Rats
6.
ACS Chem Neurosci ; 12(9): 1716-1736, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33890763

ABSTRACT

Temporal lobe epilepsy is the most common form of epilepsy, and current antiepileptic drugs are ineffective in many patients. The endocannabinoid system has been associated with an on-demand protective response to seizures. Blocking endocannabinoid catabolism would elicit antiepileptic effects, devoid of psychotropic effects. We herein report the discovery of selective anandamide catabolic enzyme fatty acid amide hydrolase (FAAH) inhibitors with promising antiepileptic efficacy, starting from a further investigation of our prototypical inhibitor 2a. When tested in two rodent models of epilepsy, 2a reduced the severity of the pilocarpine-induced status epilepticus and the elongation of the hippocampal maximal dentate activation. Notably, 2a did not affect hippocampal dentate gyrus long-term synaptic plasticity. These data prompted our further endeavor aiming at discovering new antiepileptic agents, developing a new set of FAAH inhibitors (3a-m). Biological studies highlighted 3h and 3m as the best performing analogues to be further investigated. In cell-based studies, using a neuroblastoma cell line, 3h and 3m could reduce the oxinflammation state by decreasing DNA-binding activity of NF-kB p65, devoid of cytotoxic effect. Unwanted cardiac effects were excluded for 3h (Langendorff perfused rat heart). Finally, the new analogue 3h reduced the severity of the pilocarpine-induced status epilepticus as observed for 2a.


Subject(s)
Amidohydrolases , Anticonvulsants , Anticonvulsants/pharmacology , Endocannabinoids , Enzyme Inhibitors/pharmacology , Humans , Seizures
7.
Prog Brain Res ; 259: 83-134, 2021.
Article in English | MEDLINE | ID: mdl-33541682

ABSTRACT

Endocannabinoid (eCB) and serotonin (5-HT) neuromodulatory systems work both independently and together to finely orchestrate neuronal activity throughout the brain to strongly sculpt behavioral functions. Surprising parallelism between the behavioral effects of 5-HT and eCB activity has been widely reported, including the regulation of emotional states, stress homeostasis, cognitive functions, food intake and sleep. The distribution pattern of the 5-HT system and the eCB molecular elements in the brain display a strong overlap and several studies report a functional interplay and even a tight interdependence between eCB/5-HT signaling. In this review, we examine the available evidence of the interaction between the eCB and 5-HT systems. We first introduce the eCB system, then we describe the eCB/5-HT crosstalk at the neuronal and synaptic levels. Finally, we explore the potential eCB/5-HT interaction at the behavioral level with the implication for psychiatric and neurological disorders. The precise elucidation of how this neuromodulatory interaction dynamically regulates biological functions may lead to the development of more targeted therapeutic strategies for the treatment of depressive and anxiety disorders, psychosis and epilepsy.


Subject(s)
Epilepsy , Serotonin , Brain , Endocannabinoids , Humans , Signal Transduction
8.
Article in English | MEDLINE | ID: mdl-33039434

ABSTRACT

Tobacco smoking is a serious health problem worldwide and a leading cause of mortality. Nicotine, the addictive component of tobacco, affects a range of emotional responses, including anxiety-related behaviors. Although perceived by smokers to be anxiolytic, evidence suggests that smoking increases anxiety and that mood fluctuates with nicotine intake. Thus, nicotine addiction may depend on easing the psychobiological distress caused by its abuse. The lateral habenula (LHb) has been implicated as a neural substrate for acute nicotine-induced anxiety, but its role in anxiety-like behaviors associated with chronic nicotine exposure has not been explored. Here, we assessed the effect of chronic nicotine exposure and its subsequent overnight withdrawal on anxiety-like behavior using both quantitative and multivariate T-pattern analysis in rats tested using the hole-board apparatus. Additionally, we explored the role of the LHb by comparing the behavioral effects of short-term nicotine withdrawal in chronically treated LHb-lesioned rats. Quantitative analysis revealed increased anxiety-like behavior in chronically treated overnight nicotine-deprived rats, as manifested in reduced general and focused exploratory behaviors, which was eased in animals that received nicotine. Quantitative analysis failed to reveal a role of the LHb in overnight nicotine deprivation-induced anxiety. Conversely, T-pattern analysis of behavioral outcomes revealed that chronic nicotine-treated rats still show anxiety-like behavior following nicotine challenge. Moreover, it demonstrated that the LHb lesion induced a stronger anxiolytic-like response to the acute challenge of nicotine in chronically nicotine-exposed animals, implicating the LHb in the anxiogenic effect of chronic nicotine exposure. These data further highlight the LHb as a promising target for smoking cessation therapies and support the importance of T-pattern analysis for behavioral analysis.


Subject(s)
Anxiety/chemically induced , Habenula/drug effects , Nicotine/adverse effects , Substance Withdrawal Syndrome/physiopathology , Animals , Exploratory Behavior/drug effects , Habenula/physiopathology , Male , Neurons/drug effects , Nicotine/administration & dosage , Rats , Rats, Sprague-Dawley
9.
Sci Rep ; 10(1): 14992, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32929133

ABSTRACT

Long-lasting confusion and memory difficulties during the postictal state remain a major unmet problem in epilepsy that lacks pathophysiological explanation and treatment. We previously identified that long-lasting periods of severe postictal hypoperfusion/hypoxia, not seizures per se, are associated with memory impairment after temporal lobe seizures. While this observation suggests a key pathophysiological role for insufficient energy delivery, it is unclear how the networks that underlie episodic memory respond to vascular constraints that ultimately give rise to amnesia. Here, we focused on cellular/network level analyses in the CA1 of hippocampus in vivo to determine if neural activity, network oscillations, synaptic transmission, and/or synaptic plasticity are impaired following kindled seizures. Importantly, the induction of severe postictal hypoperfusion/hypoxia was prevented in animals treated by a COX-2 inhibitor, which experimentally separated seizures from their vascular consequences. We observed complete activation of CA1 pyramidal neurons during brief seizures, followed by a short period of reduced activity and flattening of the local field potential that resolved within minutes. During the postictal state, constituting tens of minutes to hours, we observed no changes in neural activity, network oscillations, and synaptic transmission. However, long-term potentiation of the temporoammonic pathway to CA1 was impaired in the postictal period, but only when severe local hypoxia occurred. Lastly, we tested the ability of rats to perform object-context discrimination, which has been proposed to require temporoammonic input to differentiate between sensory experience and the stored representation of the expected object-context pairing. Deficits in this task following seizures were reversed by COX-2 inhibition, which prevented severe postictal hypoxia. These results support a key role for hypoperfusion/hypoxia in postictal memory impairments and identify that many aspects of hippocampal network function are resilient during severe hypoxia except for long-term synaptic plasticity.


Subject(s)
Amnesia/physiopathology , Hippocampus/physiopathology , Seizures/physiopathology , Acetaminophen/pharmacology , Animals , CA1 Region, Hippocampal/physiopathology , Hippocampus/drug effects , Hypoxia/physiopathology , Long-Term Potentiation , Male , Mice, Inbred C57BL , Neuronal Plasticity , Pyramidal Cells/physiology , Rats, Long-Evans , Seizures/chemically induced , Seizures/complications , Synaptic Transmission , Vasoconstriction
10.
Nat Commun ; 11(1): 4870, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978384

ABSTRACT

Little is known about the physiology of latent Mycobacterium tuberculosis infection. We studied the mutational rates of 24 index tuberculosis (TB) cases and their latently infected household contacts who developed active TB up to 5.25 years later, as an indication of bacterial physiological state and possible generation times during latent TB infection in humans. Here we report that the rate of new mutations in the M. tuberculosis genome decline dramatically after two years of latent infection (two-sided p < 0.001, assuming an 18 h generation time equal to log phase M. tuberculosis, with latency period modeled as a continuous variable). Alternatively, assuming a fixed mutation rate, the generation time increases over the latency duration. Mutations indicative of oxidative stress do not increase with increasing latency duration suggesting a lack of host or bacterial derived mutational stress. These results suggest that M. tuberculosis enters a quiescent state during latency, decreasing the risk for mutational drug resistance and increasing generation time, but potentially increasing bacterial tolerance to drugs that target actively growing bacteria.


Subject(s)
Latent Tuberculosis/microbiology , Mutation Rate , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Adult , Brazil , DNA, Bacterial/isolation & purification , Female , Genome, Bacterial , Humans , Male , Mutation , Mycobacterium tuberculosis/pathogenicity , Oxidative Stress , Phylogeny , Polymorphism, Single Nucleotide , Time Factors , Young Adult
11.
J Neurosci ; 40(31): 6068-6081, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32601243

ABSTRACT

Epilepsy is often associated with emotional disturbances and the endocannabinoid (eCB) system tunes synaptic transmission in brain regions regulating emotional behavior. Thus, persistent alteration of eCB signaling after repeated seizures may contribute to the development of epilepsy-related emotional disorders. Here we report that repeatedly eliciting seizures (kindling) in the amygdala caused a long-term increase in anxiety and impaired fear memory retention, which was paralleled by an imbalance in GABA/glutamate presynaptic activity and alteration of synaptic plasticity in the basolateral amygdala (BLA), in male rats. Anandamide (AEA) content was downregulated after repeated seizures, and pharmacological enhancement of AEA signaling rescued seizure-induced anxiety by restoring the tonic control of the eCB signaling over glutamatergic transmission. Moreover, AEA signaling augmentation also rescued the seizure-induced alterations of fear memory by restoring the phasic control of eCB signaling over GABAergic activity and plasticity in the BLA. These results indicate that modulation of AEA signaling represents a potential and promising target for the treatment of comorbid emotional dysfunction associated with epilepsy.SIGNIFICANCE STATEMENT Epilepsy is a heterogeneous neurologic disorder commonly associated with comorbid emotional alterations. However, the management of epilepsy is usually restricted to the control of seizures. The endocannabinoid (eCB) system, particularly anandamide (AEA) signaling, controls neuronal excitability and seizure expression and regulates emotional behavior. We found that repeated seizures cause an allostatic maladaptation of AEA signaling in the amygdala that drives emotional alterations. Boosting AEA signaling through inhibition of its degradative enzyme, fatty acid amide hydrolase (FAAH), restored both synaptic and behavioral alterations. FAAH inhibitors dampen seizure activity in animal models and are used in clinical studies to treat the negative consequences associated with stress. Thereby, they are accessible and can be clinically evaluated to treat both seizures and comorbid conditions associated with epilepsy.


Subject(s)
Affective Symptoms/physiopathology , Amygdala/physiopathology , Arachidonic Acids , Endocannabinoids , Epilepsy/physiopathology , Polyunsaturated Alkamides , Signal Transduction , Synapses , Affective Symptoms/etiology , Affective Symptoms/psychology , Amidohydrolases/physiology , Animals , Anxiety/psychology , Epilepsy/complications , Epilepsy/psychology , Fear/psychology , Glutamic Acid/physiology , Kindling, Neurologic , Male , Rats , Rats, Long-Evans , gamma-Aminobutyric Acid/physiology
12.
Am J Psychoanal ; 80(2): 196-218, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32488025

ABSTRACT

The concept of intergenerational transmission of trauma plays a fundamental role in psychoanalysis. While it is known that intergenerational trauma can be transmitted through attachment relationships, a new branch of genetics (epigenetics) has emerged to study the interaction between human behavior and changes in DNA expression. Therefore, psychoanalysis, which has proven to reduce the intergenerational transmission of trauma from a behavioral perspective, can play a positive role in regulating DNA changes caused by environmental stress. The present paper focuses on recent research suggesting a direct correlation between psychological trauma and DNA modifications. In particular, DNA changes caused by psychological trauma can be transmitted from generation to generation, validating the psychoanalytic concept of intergenerational transmission of trauma. This evidence not only supports the essential role psychoanalysis has in influencing human behavior, but also suggests that it affects not only the individuals who undergo it but their offspring, as well, via the epigenetic passage of DNA.


Subject(s)
DNA/genetics , Epigenomics/methods , Psychoanalytic Therapy/methods , Psychological Trauma/genetics , Psychological Trauma/therapy , Animals , Humans , Psychological Trauma/psychology
13.
Proc Natl Acad Sci U S A ; 117(1): 650-655, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31843894

ABSTRACT

Even a brief exposure to severe stress strengthens synaptic connectivity days later in the amygdala, a brain area implicated in the affective symptoms of stress-related psychiatric disorders. However, little is known about the synaptic signaling mechanisms during stress that eventually culminate in its delayed impact on the amygdala. Hence, we investigated early stress-induced changes in amygdalar synaptic signaling in order to prevent its delayed effects. Whole-cell recordings in basolateral amygdala (BLA) slices from rats revealed higher frequency of miniature excitatory postsynaptic currents (mEPSCs) immediately after 2-h immobilization stress. This was replicated by inhibition of cannabinoid receptors (CB1R), suggesting a role for endocannabinoid (eCB) signaling. Stress also reduced N-arachidonoylethanolamine (AEA), an endogenous ligand of CB1R. Since stress-induced activation of fatty acid amide hydrolase (FAAH) reduces AEA, we confirmed that oral administration of an FAAH inhibitor during stress prevents the increase in synaptic excitation in the BLA soon after stress. Although stress also caused an immediate reduction in synaptic inhibition, this was not prevented by FAAH inhibition. Strikingly, FAAH inhibition during the traumatic stressor was also effective 10 d later on the delayed manifestation of synaptic strengthening in BLA neurons, preventing both enhanced mEPSC frequency and increased dendritic spine-density. Thus, oral administration of an FAAH inhibitor during a brief stress prevents the early synaptic changes that eventually build up to hyperexcitability in the amygdala. This framework is of therapeutic relevance because of growing interest in targeting eCB signaling to prevent the gradual development of emotional symptoms and underlying amygdalar dysfunction triggered by traumatic stress.


Subject(s)
Basolateral Nuclear Complex/physiology , Emotions/drug effects , Endocannabinoids/metabolism , Signal Transduction/physiology , Stress, Psychological/physiopathology , Administration, Oral , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Animals , Arachidonic Acids , Cannabinoid Receptor Antagonists/administration & dosage , Disease Models, Animal , Emotions/physiology , Enzyme Inhibitors/administration & dosage , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Humans , Male , Polyunsaturated Alkamides , Rats , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Signal Transduction/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/psychology
14.
ACS Chem Neurosci ; 10(7): 3296-3306, 2019 07 17.
Article in English | MEDLINE | ID: mdl-30912644

ABSTRACT

The molecular basis for temporal lobe epileptogenesis  remains poorly defined. Recent evidence shows that serotonin 2C receptors (5-HT2CRs), NR2A and NR2B subunit-containing N-methyl-d-aspartate receptors (NMDARs) and cannabinoid 1 receptors (CB1Rs) may be involved in the progression of the epileptic disorders. Moreover, CB1R activation has been reported to modulate the activity of 5-HT2C and NMDA receptors. Here, we treated Sprague-Dawley rats with the pro-convulsant agent pilocarpine (PILO) to induce status epilepticus (SE) in order to study the effect, with regards to receptor signaling and their interactions, of the preactivation of the CB1Rs on early changes that occur 24 h from the initial insult in the hippocampus. Pretreatment with the synthetic CB1/2R agonist WIN 55,212-2 (2 mg/kg, ip) counteracted PILO-induced 5-HT2CR downregulation. Moreover, WIN 55,212-2 uncoupled PILO-induced 5-HT2CR/NR2A and prevented NR2ATyr1325 phosphorylation indirectly since no 5-HT2CR/CB1R interactions were observed. WIN 55,212-2 treatment also prevented PILO-mediated impairment of CB1R/NR2B interactions and NR2B subunit internalization, suggesting a possible role of CB1R in NR2B-containing NMDAR turn over. All the effects observed in animals treated with WIN 55,212-2 were blocked by pretreatment with the selective CB1R antagonist AM251 (1 mg/kg, ip) given 45 min before PILO injection. These results, obtained in vivo in post-PILO-induced SE, provide new insights on the early cellular responses during epileptogenesis and identify new CB1R-mediated mechanisms by which cannabinoids may prevent the development of chronic epilepsy.


Subject(s)
Benzoxazines/therapeutic use , Hippocampus/drug effects , Morpholines/therapeutic use , Naphthalenes/therapeutic use , Receptor, Cannabinoid, CB1/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Status Epilepticus/drug therapy , Animals , Benzoxazines/pharmacology , Hippocampus/metabolism , Morpholines/pharmacology , Naphthalenes/pharmacology , Pilocarpine , Piperidines/pharmacology , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Status Epilepticus/chemically induced , Status Epilepticus/metabolism
15.
Neurobiol Dis ; 125: 135-145, 2019 05.
Article in English | MEDLINE | ID: mdl-30716469

ABSTRACT

Endocannabinoids (eCBs) and serotonin (5-HT) play a neuromodulatory role in the central nervous system. Both eCBs and 5-HT regulate neuronal excitability and their pharmacological potentiation has been shown to control seizures in pre-clinical and human studies. Compelling evidence indicates that eCB and 5-HT systems interact to modulate several physiological and pathological brain functions, such as food intake, pain, drug addiction, depression, and anxiety. Nevertheless, there is no evidence of an eCB/5-HT interaction in experimental and human epilepsies, including status epilepticus (SE). Here, we performed video-EEG recording in behaving rats treated with the pro-convulsant agent pilocarpine (PILO), in order to study the effect of the activation of CB1/5-HT2 receptors and their interaction on SE. Synthetic cannabinoid agonist WIN55,212-2 (WIN) decreased behavioral seizure severity of PILO-induced SE at 2 mg/kg (but not at 1 and 5 mg/kg, i.p.), while 5-HT2B/2C receptor agonist RO60-0175 (RO; 1, 3, 10 mg/kg, i.p.) was devoid of any effect. RO 3 mg/kg was instead capable of potentiating the effect of WIN 2 mg/kg on the Racine scale score. Surprisingly, neither WIN 2 mg/kg nor RO 3 mg/kg had any effect on the incidence and the intensity of EEG seizures when administered alone. However, WIN+RO co-administration reduced the incidence and the severity of EEG SE and increased the latency to SE onset after PILO injection. WIN+RO effects were blocked by the selective CB1R antagonist AM251 and the 5-HT2BR antagonist RS127445, but not by the 5-HT2CR antagonist SB242084 or the 5-HT2AR antagonist MDL11,939. These data revealed a synergistic interaction between CB1R/5-HT2BR in the expression of PILO-induced SE.


Subject(s)
Receptor, Cannabinoid, CB1/metabolism , Receptor, Serotonin, 5-HT2B/metabolism , Status Epilepticus/metabolism , Animals , Benzoxazines/pharmacology , Calcium Channel Blockers/pharmacology , Male , Morpholines/pharmacology , Muscarinic Agonists/toxicity , Naphthalenes/pharmacology , Pilocarpine/toxicity , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/drug effects , Receptor, Serotonin, 5-HT2B/drug effects , Serotonin 5-HT2 Receptor Agonists/pharmacology , Status Epilepticus/chemically induced
17.
Sci Rep ; 8(1): 17977, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30546129

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

18.
N Engl J Med ; 379(9): 823-833, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30157391

ABSTRACT

BACKGROUND: Approximately 5% of patients with drug-susceptible tuberculosis have a relapse after 6 months of first-line therapy, as do approximately 20% of patients after 4 months of short-course therapy. We postulated that by analyzing pretreatment isolates of Mycobacterium tuberculosis obtained from patients who subsequently had a relapse or were cured, we could determine any correlations between the minimum inhibitory concentration (MIC) of a drug below the standard resistance breakpoint and the relapse risk after treatment. METHODS: Using data from the Tuberculosis Trials Consortium Study 22 (development cohort), we assessed relapse and cure isolates to determine the MIC values of isoniazid and rifampin that were below the standard resistance breakpoint (0.1 µg per milliliter for isoniazid and 1.0 µg per milliliter for rifampin). We combined this analysis with clinical, radiologic, and laboratory data to generate predictive relapse models, which we validated by analyzing data from the DMID 01-009 study (validation cohort). RESULTS: In the development cohort, the mean (±SD) MIC of isoniazid below the breakpoint was 0.0334±0.0085 µg per milliliter in the relapse group and 0.0286±0.0092 µg per milliliter in the cure group, which represented a higher value in the relapse group by a factor of 1.17 (P=0.02). The corresponding MIC values of rifampin were 0.0695±0.0276 and 0.0453±0.0223 µg per milliliter, respectively, which represented a higher value in the relapse group by a factor of 1.53 (P<0.001). Higher MIC values remained associated with relapse in a multivariable analysis that included other significant between-group differences. In an analysis of receiver-operating-characteristic curves of relapse based on these MIC values, the area under the curve (AUC) was 0.779. In the development cohort, the AUC in a multivariable model that included MIC values was 0.875. In the validation cohort, the MIC values either alone or combined with other patient characteristics were also predictive of relapse, with AUC values of 0.964 and 0.929, respectively. The use of a model score for the MIC values of isoniazid and rifampin to achieve 75.0% sensitivity in cross-validation analysis predicted relapse with a specificity of 76.5% in the development cohort and a sensitivity of 70.0% and a specificity of 100% in the validation cohort. CONCLUSIONS: In pretreatment isolates of M. tuberculosis with decrements of MIC values of isoniazid or rifampin below standard resistance breakpoints, higher MIC values were associated with a greater risk of relapse than lower MIC values. (Funded by the National Institute of Allergy and Infectious Diseases.).


Subject(s)
Antitubercular Agents/pharmacology , Drug Resistance, Bacterial , Isoniazid/pharmacology , Mycobacterium tuberculosis/drug effects , Rifampin/pharmacology , Tuberculosis/drug therapy , Adult , Antitubercular Agents/therapeutic use , Area Under Curve , Female , Humans , Isoniazid/therapeutic use , Male , Microbial Sensitivity Tests , Mycobacterium tuberculosis/isolation & purification , ROC Curve , Recurrence , Rifampin/therapeutic use , Treatment Failure , Tuberculosis/microbiology
19.
Sci Rep ; 8(1): 4648, 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-29531281

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

20.
Sci Rep ; 7(1): 11152, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894217

ABSTRACT

Synthetic cannabinoids and phytocannabinoids have been shown to suppress seizures both in humans and experimental models of epilepsy. However, they generally have a detrimental effect on memory and memory-related processes. Here we compared the effect of the inhibition of the endocannabinoid (eCB) degradation versus synthetic CB agonist on limbic seizures induced by maximal dentate activation (MDA) acute kindling. Moreover, we investigated the dentate gyrus (DG) granule cell reactivity and synaptic plasticity in naïve and in MDA-kindled anaesthetised rats. We found that both the fatty acid amide hydrolase (FAAH) inhibitor URB597 and the synthetic cannabinoid agonist WIN55,212-2 displayed AM251-sensitive anti-seizure effects. WIN55,212-2, dose-dependently (0.5-2 mg/kg, i.p.) impaired short-term plasticity (STP) and long-term potentiation (LTP) at perforant path-DG synapses in naïve rats. Strikingly, URB597 (1 mg/kg, i.p.) was devoid of any deleterious effects in normal conditions, while it prevented seizure-induced alterations of both STP and LTP. Our evidence indicates that boosting the eCB tone rather than general CB1 activation might represent a potential strategy for the development of a new class of drugs for treatment of both seizures and comorbid memory impairments associated with epilepsy.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Benzamides/pharmacology , Carbamates/pharmacology , Dentate Gyrus/drug effects , Dentate Gyrus/physiopathology , Long-Term Potentiation , Neuronal Plasticity/drug effects , Seizures/physiopathology , Animals , Cannabinoids/pharmacology , Long-Term Potentiation/drug effects , Male , Rats , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...