Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5296, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906895

ABSTRACT

Artificial atoms in solids are leading candidates for quantum networks, scalable quantum computing, and sensing, as they combine long-lived spins with mobile photonic qubits. Recently, silicon has emerged as a promising host material where artificial atoms with long spin coherence times and emission into the telecommunications band can be controllably fabricated. This field leverages the maturity of silicon photonics to embed artificial atoms into the world's most advanced microelectronics and photonics platform. However, a current bottleneck is the naturally weak emission rate of these atoms, which can be addressed by coupling to an optical cavity. Here, we demonstrate cavity-enhanced single artificial atoms in silicon (G-centers) at telecommunication wavelengths. Our results show enhancement of their zero phonon line intensities along with highly pure single-photon emission, while their lifetime remains statistically unchanged. We suggest the possibility of two different existing types of G-centers, shedding new light on the properties of silicon emitters.

2.
Nat Commun ; 15(1): 3973, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729944

ABSTRACT

Ultra-fast single-photon detectors with high current density and operating temperature can benefit space and ground applications, including quantum optical communication systems, lightweight cryogenics for space crafts, and medical use. Here we demonstrate magnesium diboride (MgB2) thin-film superconducting microwires capable of single-photon detection at 1.55 µm optical wavelength. We used helium ions to alter the properties of MgB2, resulting in microwire-based detectors exhibiting single-photon sensitivity across a broad temperature range of up to 20 K, and detection efficiency saturation for 1 µm wide microwires at 3.7 K. Linearity of detection rate vs incident power was preserved up to at least 100 Mcps. Despite the large active area of up to 400 × 400 µm2, the reset time was found to be as low as ~ 1 ns. Our research provides possibilities for breaking the operating temperature limit and maximum single-pixel count rate, expanding the detector area, and raises inquiries about the fundamental mechanisms of single-photon detection in high-critical-temperature superconductors.

3.
Nat Commun ; 13(1): 5429, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36114177

ABSTRACT

Controlling thermal transport is important for a range of devices and technologies, from phase change memories to next-generation electronics. This is especially true in nano-scale devices where thermal transport is altered by the influence of surfaces and changes in dimensionality. In superconducting nanowire single-photon detectors, the thermal boundary conductance between the nanowire and the substrate it is fabricated on influences all of the performance metrics that make these detectors attractive for applications. This includes the maximum count rate, latency, jitter, and quantum efficiency. Despite its importance, the study of thermal boundary conductance in superconducting nanowire devices has not been done systematically, primarily due to the lack of a straightforward characterization method. Here, we show that simple electrical measurements can be used to estimate the thermal boundary conductance between nanowires and substrates and that these measurements agree with acoustic mismatch theory across a variety of substrates. Numerical simulations allow us to refine our understanding, however, open questions remain. This work should enable thermal engineering in superconducting nanowire electronics and cryogenic detectors for improved device performance.

4.
Nano Lett ; 22(14): 5667-5673, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35848767

ABSTRACT

The optimization of superconducting thin-films has pushed the sensitivity of superconducting nanowire single-photon detectors (SNSPDs) to the mid-infrared (mid-IR). Earlier demonstrations have shown that straight tungsten silicide nanowires can achieve unity internal detection efficiency (IDE) up to λ = 10 µm. For a high system detection efficiency (SDE), the active area needs to be increased, but material nonuniformity and nanofabrication-induced constrictions make mid-IR large-area meanders challenging to yield. In this work, we improve the sensitivity of superconducting materials and optimize a high-resolution nanofabrication process to demonstrate large-area SNSPDs with unity IDE at 7.4 µm. Our approach yields large-area meanders down to 50 nm width, with average line-width roughness below 10%, and with a lower impact from constrictions compared to previous demonstrations. Our methods pave the way to high-efficiency SNSPDs in the mid-IR band with potential impacts on astronomy, imaging, and physical chemistry.


Subject(s)
Nanowires , Electric Conductivity , Equipment Design , Photometry , Photons
5.
ACS Nano ; 16(8): 12930-12940, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35849731

ABSTRACT

Short-wave infrared (SWIR; 850-1700 nm) upconversion fluorescence enables "autofluorescence-free" imaging with minimal tissue scattering, yet it is rarely explored due to the lack of strongly emissive SWIR upconversion fluorophores. In this work, we apply SWIR upconversion fluorescence for in vivo imaging with exceptional image contrast. Gold nanorods (AuNRs) are used to enhance the SWIR upconversion emission of small organic dyes, forming a AuNR-dye nanocomposite (NC). A maximal enhancement factor of ∼1320, contributed by both excitation and radiative decay rate enhancement, is achieved by varying the dye-to-AuNR ratio. In addition, the upconversion emission intensity of both free dyes and AuNR-dye NCs depends linearly on the excitation power, indicating that the upconversion emission mechanism remains unchanged upon enhancement, and it involves one-photon absorption. Moreover, the SWIR upconversion emission shows a significantly higher signal contrast than downconversion emission in the same emission window in a nonscattering medium. Finally, we apply the surface plasmon enhanced SWIR upconversion fluorescence for in vivo imaging of ovarian cancer, demonstrating high image contrast and low required dosage due to the suppressed autofluorescence.


Subject(s)
Fluorescent Dyes , Ovarian Neoplasms , Humans , Female , Fluorescence , Gold , Diagnostic Imaging , Ovarian Neoplasms/diagnostic imaging
6.
Phys Rev Lett ; 128(23): 231802, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35749181

ABSTRACT

Uncovering the nature of dark matter is one of the most important goals of particle physics. Light bosonic particles, such as the dark photon, are well-motivated candidates: they are generally long-lived, weakly interacting, and naturally produced in the early universe. In this work, we report on Light A^{'} Multilayer Periodic Optical SNSPD Target, a proof-of-concept experiment searching for dark photon dark matter in the eV mass range, via coherent absorption in a multilayer dielectric haloscope. Using a superconducting nanowire single-photon detector (SNSPD), we achieve efficient photon detection with a dark count rate of ∼6×10^{-6} counts/s. We find no evidence for dark photon dark matter in the mass range of ∼0.7-0.8 eV with kinetic mixing ε≳10^{-12}, improving existing limits in ε by up to a factor of 2. With future improvements to SNSPDs, our architecture could probe significant new parameter space for dark photon and axion dark matter in the meV to 10 eV mass range.

7.
Nano Lett ; 20(5): 3858-3863, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32271591

ABSTRACT

Time- and number-resolved photon detection is crucial for quantum information processing. Existing photon-number-resolving (PNR) detectors usually suffer from limited timing and dark-count performance or require complex fabrication and operation. Here, we demonstrate a PNR detector at telecommunication wavelengths based on a single superconducting nanowire with an integrated impedance-matching taper. The taper provides a kΩ load impedance to the nanowire, making the detector's output amplitude sensitive to the number of photon-induced hotspots. The prototyping device was able to resolve up to four absorbed photons with 16.1 ps timing jitter and <2 c.p.s. device dark count rate. Its exceptional distinction between single- and two-photon responses is ideal for high-fidelity coincidence counting and allowed us to directly observe bunching of photon pairs from a single output port of a Hong-Ou-Mandel interferometer. This detector architecture may provide a practical solution to applications that require high timing resolution and few-photon discrimination.

8.
Sci Rep ; 10(1): 248, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31937815

ABSTRACT

One of the most challenging obstacles to realizing exascale computing is minimizing the energy consumption of L2 cache, main memory, and interconnects to that memory. For promising cryogenic computing schemes utilizing Josephson junction superconducting logic, this obstacle is exacerbated by the cryogenic system requirements that expose the technology's lack of high-density, high-speed and power-efficient memory. Here we demonstrate an array of cryogenic memory cells consisting of a non-volatile three-terminal magnetic tunnel junction element driven by the spin Hall effect, combined with a superconducting heater-cryotron bit-select element. The write energy of these memory elements is roughly 8 pJ with a bit-select element, designed to achieve a minimum overhead power consumption of about 30%. Individual magnetic memory cells measured at 4 K show reliable switching with write error rates below 10-6, and a 4 × 4 array can be fully addressed with bit select error rates of 10-6. This demonstration is a first step towards a full cryogenic memory architecture targeting energy and performance specifications appropriate for applications in superconducting high performance and quantum computing control systems, which require significant memory resources operating at 4 K.

9.
Phys Rev Lett ; 123(15): 151802, 2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31702301

ABSTRACT

We propose the use of superconducting nanowires as both target and sensor for direct detection of sub-GeV dark matter. With excellent sensitivity to small energy deposits on electrons and demonstrated low dark counts, such devices could be used to probe electron recoils from dark matter scattering and absorption processes. We demonstrate the feasibility of this idea using measurements of an existing fabricated tungsten-silicide nanowire prototype with 0.8-eV energy threshold and 4.3 ng with 10 000 s of exposure, which showed no dark counts. The results from this device already place meaningful bounds on dark matter-electron interactions, including the strongest terrestrial bounds on sub-eV dark photon absorption to date. Future expected fabrication on larger scales and with lower thresholds should enable probing of new territory in the direct detection landscape, establishing the complementarity of this approach to other existing proposals.

SELECTION OF CITATIONS
SEARCH DETAIL
...