Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Regen Med ; 18(9): 719-734, 2023 09.
Article in English | MEDLINE | ID: mdl-37577987

ABSTRACT

Aim: Bibliometric surveys are time-consuming endeavors, which cannot be scaled up to meet the challenges of ever-expanding fields, such as bone regeneration. Artificial intelligence, however, can provide smart tools to screen massive amounts of literature, and we relied on this technology to automatically identify research topics. Materials & methods: We used the BERTopic algorithm to detect the topics in a corpus of MEDLINE manuscripts, mapping their similarities and highlighting research hotspots. Results: Using BERTopic, we identified 372 topics and were able to assess the growing importance of innovative and recent fields of investigation such as 3D printing and extracellular vescicles. Conclusion: BERTopic appears as a suitable tool to set up automatic screening routines to track the progress in bone regeneration.


Subject(s)
Artificial Intelligence , Bone Regeneration , Bibliometrics , Printing, Three-Dimensional
2.
Biomed Mater ; 15(5): 055018, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32438354

ABSTRACT

Tissue regeneration often requires the use of biocompatible resorbable scaffolds to support the ingrowth of cells from neighboring tissues into a localized tissue defect. Such scaffolds must possess surface molecular cues that stimulate cells to populate the device, the first necessary condition for the formation of a healthy tissue. Chitosan is a natural polymer that has long been tested in biomedical applications because of its high biocompatibility, which can be further increased by modifying its formulation, e.g. adding D-(+) raffinose. We used this formulation in an ad hoc designed 3D printer to create regularly ordered scaffolds, which we then enriched with type IV collagen, an isoform of collagen that is exclusively found in basement membranes. Human epithelial A549 cells were then seeded on control scaffolds or on scaffolds coated with collagen, which was precipitated, or on scaffolds first collagenized and then exposed to either UVB or UVC radiation. Observations by the transmission light microscope, confocal microscope after staining with calcein-AM/propidium iodide, and by environmental scanning electron microscope revealed that collagen-enriched UV-treated scaffolds promoted the attachment of a higher number of cells, which covered a more extensive area of the scaffold, as also confirmed by alamar blue viability assay. Together these data confirm that coating 3D-printed scaffolds made of D-(+) raffinose-modified chitosan with type IV collagen and exposing them to UV light sensibly increases the cell compatibility of scaffolds, making them a better candidate to serve as a tool for the regeneration of epithelia.


Subject(s)
Biocompatible Materials/chemistry , Chitosan/chemistry , Collagen Type IV/chemistry , Epithelial Cells/metabolism , Printing, Three-Dimensional , Raffinose/chemistry , Tissue Scaffolds/chemistry , A549 Cells , Cell Adhesion , Coated Materials, Biocompatible/chemistry , Collagen/chemistry , Fluoresceins/chemistry , Humans , Materials Testing , Microscopy, Confocal , Polymers/chemistry , Propidium/chemistry , Regeneration , Temperature , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...