Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(9): e0238879, 2020.
Article in English | MEDLINE | ID: mdl-32915887

ABSTRACT

BACKGROUND: Mesenchymal stem cell-derived extracellular vesicles (EVs) appear to be a very exciting treatment option for heart disease. Here, we used a swine model of chronic myocardial ischemia to evaluate the efficacy of a less-invasive method of injection of EVs via a peripheral intravenous route. METHODS: Sixteen Yorkshire swine underwent placement of an ameroid constrictor on the left circumflex (LCx) artery at age 11 weeks to induce chronic myocardial ischemia. Two weeks later, they were divided into two groups: control (CON; n = 8), and intravenous injection of EVs (EVIV; n = 8). At 18 weeks of age, animals underwent final analysis and euthanasia. The chronically ischemic myocardium (LCx territory) was harvested for analysis. RESULTS: Intravenous injection (IV) of EVs induced several pro-angiogenic markers such as MAPK, JNK but not Akt. Whereas IV injections of EVs decreased VEGFR2 expression and inhibited apoptotic signaling (caspase 3), they increased expression of VEGFR1 that is believed to be anti-angiogenic. Injection of EVs did not result in an increase in vessel density and blood flow when compared to the control group. CONCLUSIONS: Although IV injection of EVs upregulated several pro-angiogenic signaling pathways, it failed to induce changes in vascular density in the chronically ischemic myocardium. Thus, a lack of increase in vascular density at the doses tested failed to elicit a functional response in ischemic myocardium.


Subject(s)
Disease Models, Animal , Extracellular Vesicles/transplantation , Mesenchymal Stem Cells/cytology , Myocardial Ischemia/therapy , Neovascularization, Physiologic , Animals , Apoptosis , Chronic Disease , Coronary Circulation , Hemodynamics , Humans , Male , Swine
2.
Dev Biol ; 376(2): 213-23, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23391688

ABSTRACT

Ci-MRF is the sole myogenic regulatory factor (MRF) of the ascidian Ciona intestinalis, an invertebrate chordate. In order to investigate its properties we developed a simple in vivo assay based on misexpressing Ci-MRF in the notochord of Ciona embryos. We used this assay to examine the roles of three structural motifs that are conserved among MRFs: an alanine-threonine (Ala-Thr) dipeptide of the basic domain that is known in vertebrates as the myogenic code, a cysteine/histidine-rich (C/H) domain found just N-terminal to the basic domain, and a carboxy-terminal amphipathic α-helix referred to as Helix III. We show that the Ala-Thr dipeptide is necessary for normal Ci-MRF function, and that while eliminating the C/H domain or Helix III individually has no demonstrable effect on Ci-MRF, simultaneous loss of both motifs significantly reduces its activity. Our studies also indicate that direct interaction between CiMRF and an essential E-box of Ciona Troponin I is required for the expression of this muscle-specific gene and that multiple classes of MRF-regulated genes exist in Ciona. These findings are consistent with substantial conservation of MRF-directed myogenesis in chordates and demonstrate for the first time that the Ala/Thr dipeptide of the basic domain of an invertebrate MRF behaves as a myogenic code.


Subject(s)
Ciona intestinalis/metabolism , Gene Expression Regulation, Developmental , Myogenic Regulatory Factors/physiology , Alanine/genetics , Animals , Chordata/genetics , Models, Biological , Muscle Development , Muscles/metabolism , Mutation , Myogenic Regulatory Factors/genetics , Notochord/metabolism , Peptides/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Threonine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...