Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Alzheimers Dis ; 78(1): 291-308, 2020.
Article in English | MEDLINE | ID: mdl-32955458

ABSTRACT

BACKGROUND: The European PharmaCog study (http://www.pharmacog.org) has reported a reduction in delta (1-6 Hz) electroencephalographic (EEG) power (density) during cage exploration (active condition) compared with quiet wakefulness (passive condition) in PDAPP mice (hAPP Indiana V717F mutation) modeling Alzheimer's disease (AD) amyloidosis and cognitive deficits. OBJECTIVE: Here, we tested the reproducibility of that evidence in TASTPM mice (double mutation in APP KM670/671NL and PSEN1 M146V), which develop brain amyloidosis and cognitive deficits over aging. The reliability of that evidence was examined in four research centers of the PharmaCog study. METHODS: Ongoing EEG rhythms were recorded from a frontoparietal bipolar channel in 29 TASTPM and 58 matched "wild type" C57 mice (range of age: 12-24 months). Normalized EEG power was calculated. Frequency and amplitude of individual delta and theta frequency (IDF and ITF) peaks were considered during the passive and active conditions. RESULTS: Compared with the "wild type" group, the TASTPM group showed a significantly lower reduction in IDF power during the active over the passive condition (p < 0.05). This effect was observed in 3 out of 4 EEG recording units. CONCLUSION: TASTPM mice were characterized by "poor reactivity" of delta EEG rhythms during the cage exploration in line with previous evidence in PDAPP mice. The reliability of that result across the centers was moderate, thus unveiling pros and cons of multicenter preclinical EEG trials in TASTPM mice useful for planning future studies.


Subject(s)
Alzheimer Disease/genetics , Electroencephalography/methods , Amyloid beta-Protein Precursor/genetics , Amyloidosis , Animals , Brain/metabolism , Cognitive Dysfunction , Mice , Mice, Transgenic , Movement , Reproducibility of Results , Wakefulness
2.
Curr Alzheimer Res ; 15(3): 259-272, 2018.
Article in English | MEDLINE | ID: mdl-28675996

ABSTRACT

BACKGROUND: It has been shown that theta (6-10 Hz) and delta (1-6 Hz) ongoing electroencephalographic (EEG) rhythms revealed variations in the cortical arousal in C57 Wild Type (WT) mice during cage exploration (active condition) compared to awake quiet behavior (passive condition; IMI PharmaCog project, www.pharmacog.eu). OBJECTIVE: The objective was to test if these EEG rhythms might be abnormal in old PDAPP mice modeling Alzheimer's disease (AD) with a hAPP Indiana V717F mutation (They show abnormal neural transmission, cognitive deficits, and brain accumulation of Aß1-42). METHODS: Ongoing EEG rhythms were recorded by a frontoparietal bipolar channel in 15 PDAPP and 23 WT C57 male mice (mean age of 22.8 months ±0.4 and 0.3 standard error, respectively). EEG absolute power (density) was calculated. Frequency and amplitude of individual delta and theta frequency (IDF and ITF) peaks were considered during passive and active states in the wakefulness. RESULTS: Compared with the WT group, the PDAPP group showed higher frequency of the IDF during the passive condition and lower frequency of the ITF during the active state. Furthermore, the WT but not PDAPP group showed significant changes in the frontoparietal EEG power (IDF, ITF) during active over passive state. CONCLUSION: PDAPP mice were characterized by less changes in the brain arousal during an active state as revealed by frontoparietal EEG rhythms. Future studies will have to cross-validate the present results on large animal groups, clarify the neurophysiological underpinning of the effect, and test if the disease modifying drugs against AD amyloidosis normalize those candiate EEG biomarkers in PDAPP mice.


Subject(s)
Alzheimer Disease , Brain Mapping , Brain Waves/physiology , Cerebral Cortex/physiopathology , Electroencephalography , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Analysis of Variance , Animals , Arousal , Brain Waves/genetics , Disease Models, Animal , Fourier Analysis , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Phenylalanine/genetics , Valine/genetics
3.
PLoS Negl Trop Dis ; 11(8): e0005854, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28821016

ABSTRACT

BACKGROUND: Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relationship between the onset of these alterations and the development of neuroinflammation is of high translational relevance, but remains unclear. This study investigates the expression of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of trypanosome infection, and correlates these with sleep/wake changes in a rat model of the disease. METHODOLOGY/PRINCIPAL FINDINGS: The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infection (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concentration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into wakefulness. CONCLUSIONS/SIGNIFICANCE: The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide combined humoral and functional biomarkers of the early encephalitic stage in African trypanosomiasis.


Subject(s)
Chemokines/blood , Chemokines/cerebrospinal fluid , Encephalitis/parasitology , Sleep , Trypanosomiasis, African/blood , Trypanosomiasis, African/cerebrospinal fluid , Animals , Biomarkers , Brain/parasitology , Brain/pathology , Interferon-gamma/blood , Interferon-gamma/cerebrospinal fluid , Male , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Regression Analysis , Trypanosoma brucei brucei
4.
Neurobiol Aging ; 49: 20-30, 2017 01.
Article in English | MEDLINE | ID: mdl-27728831

ABSTRACT

Resting state electroencephalographic (EEG) rhythms reflect the fluctuation of cortical arousal and vigilance in a typical clinical setting, namely the EEG recording for few minutes with eyes closed (i.e., passive condition) and eyes open (i.e., active condition). Can this procedure be back-translated to C57 (wild type) mice for aging studies? On-going EEG rhythms were recorded from a frontoparietal bipolar channel in 85 (19 females) C57 mice. Male mice were subdivided into 3 groups: 25 young (4.5-6 months), 18 middle-aged (12-15 months), and 23 old (20-24 months) mice to test the effect of aging. EEG power density was compared between short periods (about 5 minutes) of awake quiet behavior (passive) and dynamic exploration of the cage (active). Compared with the passive condition, the active condition induced decreased EEG power at 1-2 Hz and increased EEG power at 6-10 Hz in the group of 85 mice. Concerning the aging effects, the passive condition showed higher EEG power at 1-2 Hz in the old group than that in the others. Furthermore, the active condition exhibited a maximum EEG power at 6-8 Hz in the former group and 8-10 Hz in the latter. In the present conditions, delta and theta EEG rhythms reflected changes in cortical arousal and vigilance in freely behaving C57 mice across aging. These changes resemble the so-called slowing of resting state EEG rhythms observed in humans across physiological and pathological aging. The present EEG procedures may be used to enhance preclinical phases of drug discovery in mice for understanding the neurophysiological effects of new compounds against brain aging.


Subject(s)
Aging/physiology , Arousal/physiology , Cerebral Cortex/physiology , Electroencephalography , Animals , Drug Discovery , Female , Male , Mice, Inbred C57BL , Rest/physiology , Wakefulness/physiology
5.
Neurosci Biobehav Rev ; 54: 3-17, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25479103

ABSTRACT

The paraventricular thalamic nucleus (PVT), the main component of the dorsal thalamic midline, receives multiple inputs from the brain stem and hypothalamus, and targets the medial prefrontal cortex, nucleus accumbens and amygdala. PVT has been implicated in several functions, especially adaptation to chronic stress, addiction behaviors and reward, mood, emotion. We here focus on the wiring and neuronal properties linking PVT with circadian timing and sleep/wake regulation, and their behavioral implications. PVT is interconnected with the master circadian pacemaker, the hypothalamic suprachiasmatic nucleus, receives direct and indirect photic input, is densely innervated by orexinergic neurons which play a key role in arousal and state transitions. Endowed with prominent wake-related Fos expression which is suppressed by sleep, and with intrinsic neuronal properties showing a diurnal oscillation unique in the thalamus, PVT could represent a station of interaction of thalamic and hypothalamic sleep/wake-regulatory mechanisms. PVT could thus play a strategic task by funneling into limbic and limbic-related targets circadian timing and state-dependent behavior information, tailoring it for cognitive performance and motivated behaviors.


Subject(s)
Circadian Clocks , Midline Thalamic Nuclei/physiology , Sleep , Wakefulness , Animals , Humans , Limbic System/physiology , Midline Thalamic Nuclei/cytology , Nerve Net/physiology , Neurons/physiology , Orexins/physiology , Proto-Oncogene Proteins c-fos/metabolism , Suprachiasmatic Nucleus/physiology
6.
Curr Alzheimer Res ; 10(6): 597-608, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23627753

ABSTRACT

Body function rhythmicity has a key function for the regulation of internal timing and adaptation to the environment. A wealth of recent data has implicated endogenous biological rhythm generation and regulation in susceptibility to disease, longevity, cognitive performance. Concerning brain diseases, it has been established that many molecular pathways implicated in neurodegeneration are under circadian regulation. At the molecular level, this regulation relies on clock genes forming interconnected, self-sustained transcriptional/translational feedback loops. Cells of the master circadian pacemaker, the hypothalamic suprachiasmatic nucleus, are endowed with this molecular clockwork. Brain cells in many other regions, including those which play a key role in learning and memory, as well as peripheral cells show a circadian oscillatory behavior regulated by the same molecular clockwork. We here address the question as to whether intracellular clockwork signaling and/or the intercellular dialogue between "brain clocks" are disrupted in aging-dependent neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. The potential implications of clock genes in cognitive functions in normal conditions, clinical disturbances of circadian rhythms, and especially the sleep-wake cycle, in aging-dependent neurodegenerative diseases and data in animal models are reviewed. The currently limited knowledge in this field is discussed in the context of the more extensive body of data available on cell clocks and molecular clockwork during normal aging. Hypotheses on implications of the synchronization between brain oscillators in information processing in neural networks lay ground for future studies on brain health and disease.


Subject(s)
Aging/physiology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Neurodegenerative Diseases/physiopathology , Neurons/physiology , Animals , Brain/physiology , Humans , Signal Transduction/physiology
7.
Front Syst Neurosci ; 7: 106, 2013 Dec 13.
Article in English | MEDLINE | ID: mdl-24379759

ABSTRACT

Paradigms of sleep deprivation (SD) and memory testing in rodents (laboratory rats and mice) are here reviewed. The vast majority of these studies have been aimed at understanding the contribution of sleep to cognition, and in particular to memory. Relatively little attention, instead, has been devoted to SD as a challenge to induce a transient memory impairment, and therefore as a tool to test cognitive enhancers in drug discovery. Studies that have accurately described methodological aspects of the SD protocol are first reviewed, followed by procedures to investigate SD-induced impairment of learning and memory consolidation in order to propose SD protocols that could be employed as cognitive challenge. Thus, a platform of knowledge is provided for laboratory protocols that could be used to assess the efficacy of drugs designed to improve memory performance in rodents, including rodent models of neurodegenerative diseases that cause cognitive deficits, and Alzheimer's disease in particular. Issues in the interpretation of such preclinical data and their predictive value for clinical translation are also discussed.

8.
Chronobiol Int ; 29(4): 469-81, 2012 May.
Article in English | MEDLINE | ID: mdl-22497431

ABSTRACT

Human African trypanosomiasis (HAT), or sleeping sickness, is a severe disease caused by Trypanosoma brucei (T.b.). The disease hallmark is sleep alterations. Brain involvement in HAT is a crucial pathogenetic step for disease diagnosis and therapy. In this study, a rat model of African trypanosomiasis was used to assess changes of sleep-wake, rest-activity, and body temperature rhythms in the time window previously shown as crucial for brain parenchyma invasion by T.b. to determine potential biomarkers of this event. Chronic radiotelemetric monitoring in Sprague-Dawley rats was used to continuously record electroencephalogram, electromyogram, rest-activity, and body temperature in the same animals before (baseline recording) and after infection. Rats were infected with T.b. brucei. Data were acquired from 1 to 20 d after infection (parasite neuroinvasion initiates at 11-13 d post-infection in this model), and were compared to baseline values. Sleep parameters were manually scored from electroencephalographic-electromyographic tracings. Circadian rhythms of sleep time, slow-wave activity, rest-activity, and body temperature were studied using cosinor rhythmometry. Results revealed alterations of most of the analyzed parameters. In particular, sleep pattern and sleep-wake organization plus rest-activity and body temperature rhythms exhibited early quantitative and qualitative alterations, which became marked around the time interval crucial for parasite neuroinvasion or shortly after. Data derived from actigrams showed close correspondence with those from hypnograms, suggesting that rest-activity could be useful to monitor sleep-wake alterations in African trypanosomiasis.


Subject(s)
Behavior, Animal , Brain/parasitology , Circadian Rhythm , Sleep , Trypanosoma brucei brucei/pathogenicity , Trypanosomiasis, African/parasitology , Animals , Biological Clocks , Body Temperature Regulation , Brain/physiopathology , Disease Models, Animal , Electroencephalography , Electromyography , Male , Motor Activity , Photoperiod , Polysomnography , Rats , Rats, Sprague-Dawley , Reaction Time , Sleep Disorders, Circadian Rhythm/parasitology , Sleep Disorders, Circadian Rhythm/physiopathology , Sleep, REM , Telemetry , Time Factors , Trypanosomiasis, African/complications , Trypanosomiasis, African/physiopathology
9.
Neuropsychopharmacology ; 37(3): 822-37, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22048464

ABSTRACT

Modafinil (MOD) is a wake-promoting drug with pro-cognitive properties. Despite its increasing use, the neuronal substrates of MOD action remain elusive. In particular, animal studies have highlighted a putative role of diencephalic areas as primary neuronal substrate of MOD action, with inconsistent evidence of recruitment of fronto-cortical areas despite the established pro-cognitive effects of the drug. Moreover, most animal studies have employed doses of MOD of limited clinical relevance. We used pharmacological magnetic resonance imaging (phMRI) in the anesthetized rat to map the circuitry activated by a MOD dose producing clinically relevant plasma exposure, as here ascertained by pharmacokinetic measurements. We observed prominent and sustained activation of the prefrontal and cingulate cortex, together with weaker but significant activation of the somatosensory cortex, medial thalamic domains, hippocampus, ventral striatum and dorsal raphe. Correlation analysis of phMRI data highlighted enhanced connectivity within a neural network including dopamine projections from the ventral tegmental area to the nucleus accumbens. The pro-arousing effect of MOD was assessed using electroencephalographic recording under anesthetic conditions comparable to those used for phMRI, together with the corresponding Fos immunoreactivity distribution. MOD produced electroencephalogram desynchronization, resulting in reduced delta and increased theta frequency bands, and a pattern of Fos induction largely consistent with the phMRI study. Altogether, these findings show that clinically relevant MOD doses can robustly activate fronto-cortical areas involved in higher cognitive functions and a network of pro-arousing areas, which provide a plausible substrate for the wake-promoting and pro-cognitive effects of the drug.


Subject(s)
Benzhydryl Compounds/pharmacology , Central Nervous System Stimulants/pharmacology , Frontal Lobe/drug effects , Nerve Net/drug effects , Somatosensory Cortex/drug effects , Animals , Brain Mapping , Frontal Lobe/metabolism , Magnetic Resonance Imaging , Male , Modafinil , Nerve Net/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Somatosensory Cortex/metabolism
10.
Ital J Anat Embryol ; 115(1-2): 31-8, 2010.
Article in English | MEDLINE | ID: mdl-21072987

ABSTRACT

Tissues and organs change over time, regulated by intrinsic (genetic) determinants and environmental (and microenvironmental) adaptation. Brain changes during lifetime are especially critical, as the brain is the effector of cognition and the vast majority of neurons live throughout the life of the individual. In addition, brain aging mechanisms are especially critical for disease vulnerability, given the aging-related prevalence of pathologies that include neurodegenerative diseases. In this context, the present contribution concisely highlights data yielded by recent trends of research on the normal aging brain, and specifically: the occurrence of synaptic changes (rather than neuronal loss) and the altered regulation of adult neurogenesis (which represents a novel exciting field of knowledge); the development of a low-grade chronic inflammatory state which primes glial cells and may lead to changes in intercellular crosstalk, thus playing a potential role in the brain susceptibility to neurodegeneration; changes occurring in state-dependent behavior, sleep and wake, which are products of global brain functioning and underlie consciousness and cognitive performance; changes in the biological clock, the hypothalamic suprachiasmatic nucleus, which regulates sleep-wake alternation and other endogenous rhythms. Altogether, the present synopsis of recent studies at the molecular, cellular, and functional levels emphasizes the idea that the normal aging brain should be viewed as an example of adaptation and plasticity rather than as an obligatory decline.


Subject(s)
Aging/pathology , Brain/pathology , Inflammation/pathology , Neurons/pathology , Signal Transduction/physiology , Sleep/physiology , Wakefulness/physiology , Aging/physiology , Animals , Brain/anatomy & histology , Brain/physiology , Circadian Rhythm/physiology , Humans , Inflammation/physiopathology , Neuronal Plasticity/physiology , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...