Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Rep ; 43(10): 114773, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39325623

ABSTRACT

Tumor-associated macrophages (TAMs), often adopting an immunosuppressive M2-like phenotype, correlate with unfavorable cancer outcomes. Our investigation unveiled elevated expression of the butyrophilin (BTN)2A1 in M2-like TAMs across diverse cancer types. We developed anti-BTN2A1 monoclonal antibodies (mAbs), and notably, one clone demonstrated a robust inhibitory effect on M2-like macrophage differentiation, inducing a shift toward an M1-like phenotype both in vitro and ex vivo in TAMs from patients with cancer. Macrophages treated with this anti-BTN2A1 mAb exhibited enhanced support for T cell proliferation and interferon-gamma (IFNγ) secretion. Mechanistically, BTN2A1 engagement induced spleen tyrosine kinase (SYK) recruitment, leading to sequential SYK and extracellular signal-regulated kinase (ERK) phosphorylation. Inhibition of SYK or ERK phosphorylation abolished M2 reprogramming upon BTN2A1 engagement. Our findings, derived from an analysis of macrophages from healthy donors and human tumors, underscore the pivotal role of BTN2A1 in immunosuppressive macrophage differentiation and function, offering potential applications in cancer immunotherapy.

2.
Sci Transl Med ; 13(616): eabj0835, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34669444

ABSTRACT

Gamma delta T (γδ T) cells are among the most potent cytotoxic lymphocytes. Activating anti­butyrophilin 3A (BTN3A) antibodies prime diverse tumor cell types to be killed by Vγ9Vδ2 T cells, the predominant γδ T cell subset in peripheral circulation, by mechanisms independent of tumor antigen­major histocompatibility complex (MHC) complexes. In this report, we describe the development of a humanized monoclonal antibody, ICT01, with subnanomolar affinity for the three isoforms of BTN3A. We demonstrate that ICT01-activated Vγ9Vδ2 T cells kill multiple tumor cell lines and primary tumor cells, but not normal healthy cells, in an efficient process requiring approximately 20% target occupancy. We show that ICT01 activity is dependent on BTN3A and BTN2A but independent of the phosphoantigen (pAg)­binding B30.2 domain. ICT01 delays the growth of hematologic and solid tumor xenografts and prolongs survival of NOD/SCID/IL2rγnull (NSG) mice adoptively transferred with human Vγ9Vδ2 T cells. In single- and multiple-dose safety studies in cynomolgus macaques that received up to 100 mg/kg once weekly, ICT01 was well tolerated. With respect to pharmacodynamic endpoints, ICT01 selectively activated Vγ9Vδ2 T cells without affecting other BTN3A-expressing lymphocytes such as αß T or B cells. A first-in-human, phase 1/2a, open-label, clinical study of ICT01 was thus initiated in patients with advanced-stage solid tumors (EVICTION: NCT04243499; EudraCT: 2019-003847-31). Preliminary results show that ICT01 was well tolerated and pharmacodynamically active in the first patients. Digital pathology analysis of tumor biopsies of a patient with melanoma suggests that ICT01 may promote immune cell infiltration within the tumor microenvironment.


Subject(s)
Lymphocyte Activation , T-Lymphocytes , Receptors, Antigen, T-Cell, gamma-delta
3.
Methods Mol Biol ; 1827: 165-178, 2018.
Article in English | MEDLINE | ID: mdl-30196497

ABSTRACT

The isolation of antibody fragments targeting proteins implicated in cancers and other diseases remains a crucial issue on targeted therapy or diagnostic tool development. In many case, the protein of interest, or a relevant portion of this protein such as its extracellular domain, is available as purified protein. In such cases, phage display on purified antigen is an easy and fast way to select antibody fragment able to efficiently bind this antigen. However the output of phage selection can vary significantly depending on the way to immobilize the purified antigen during selection. The following protocols describe the selection of phage antibody on purified antigen adsorbed on plastic, i.e., panning, or a selection in solution, using a biotinylated antigen as well as the corresponding screening produces, and give hints on the advantage and drawbacks of each approach.


Subject(s)
Antigens/isolation & purification , Cell Surface Display Techniques/methods , Antibodies/metabolism , Bacteriophages/metabolism , Biotinylation , Chemical Precipitation , Enzyme-Linked Immunosorbent Assay , Peptide Library , Solubility
4.
PLoS One ; 11(8): e0160345, 2016.
Article in English | MEDLINE | ID: mdl-27479095

ABSTRACT

The immunoglobulin Fc region is a homodimer consisted of two sets of CH2 and CH3 domains and has been exploited to generate two-arm protein fusions with high expression yields, simplified purification processes and extended serum half-life. However, attempts to generate one-arm fusion proteins with monomeric Fc, with one set of CH2 and CH3 domains, are often plagued with challenges such as weakened binding to FcRn or partial monomer formation. Here, we demonstrate the generation of a stable IgG4 Fc monomer with a unique combination of mutations at the CH3-CH3 interface using rational design combined with in vitro evolution methodologies. In addition to size-exclusion chromatography and analytical ultracentrifugation, we used multi-angle light scattering (MALS) to show that the engineered Fc monomer exhibits excellent monodispersity. Furthermore, crystal structure analysis (PDB ID: 5HVW) reveals monomeric properties supported by disrupted interactions at the CH3-CH3 interface. Monomeric Fc fusions with Fab or scFv achieved FcRn binding and serum half-life comparable to wildtype IgG. These results demonstrate that this monomeric IgG4 Fc is a promising therapeutic platform to extend the serum half-life of proteins in a monovalent format.


Subject(s)
Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Animals , Chromatography, Gel , Crystallography, X-Ray , Dynamic Light Scattering , Enzyme-Linked Immunosorbent Assay , Half-Life , Humans , Immunoglobulin Fc Fragments/blood , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/blood , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Mice , Mice, Transgenic , Molecular Dynamics Simulation , Peptide Library , Protein Binding , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL