Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 48(10): 6482-6496, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34374461

ABSTRACT

PURPOSE: Metal artifact remains a challenge in cone-beam CT images. Many image domain-based segmentation methods have been proposed for metal artifact reduction (MAR), which require two-pass reconstruction. Such methods first segment metal from a first-pass reconstruction and then forward-project the metal mask to identify them in projections. These methods work well in general but are limited when the metal is outside the scan field-of-view (FOV) or when the metal is moving during the scan. In the former, even reconstructing with a larger FOV does not guarantee a good estimate of metal location in the projections; and in the latter, the metal location in each projection is difficult to identify due to motion. Single-pass methods that detect metal in single-energy projections have also been developed, but often have imperfect metal detection that leads to residual artifacts. In this work, we develop a MAR method using a dual-layer (DL) flat panel detector, which improves performance for single-pass reconstruction. METHODS: In this work, we directly detect metal objects in projections using dual-energy (DE) imaging that generates material-specific images (e.g., soft tissue and bone), where the metal stands out in bone images when nonuniform soft tissue background is removed. Metal is detected via simple thresholding, and entropy filtration is further applied to remove false-positive detections. A DL detector provides DE images with superior temporal and spatial registration and was used to perform the task. Scatter correction was first performed on DE raw projections to improve the accuracy of material decomposition. One phantom mimicking a liver biopsy setup and a cadaver head were used to evaluate the metal reduction performance of the proposed method and compared with that of a standard two-pass reconstruction, a previously published sinogram-based method using a Markov random field (MRF) model, and a single-pass projection-domain method using single-energy imaging. The phantom has a liver steering setup placed in a hollow chest phantom, with embedded metal and a biopsy needle crossing the phantom boundary. The cadaver head has dental fillings and a metal tag attached to its surface. The identified metal regions in each projection were corrected by interpolation using surrounding pixels, and the images were reconstructed using filtered backprojection. RESULTS: Our current approach removes metal from the projections, which is robust to FOV truncation during imaging acquisition. In case of FOV truncation, the method outperformed the two-pass reconstruction method. The proposed method using DE renders better accuracy in metal segmentation than the MRF method and single-energy method, which were prone to false-positive errors that cause additional streaks. For the liver steering phantom, the average spatial nonuniformity was reduced from 0.127 in uncorrected images to 0.086 using a standard two-pass reconstruction and to 0.077 using the proposed method. For the cadaver head, the average standard deviation within selected soft tissue regions ( σ s ) was reduced from 209.1 HU in uncorrected images to 69.1 HU using a standard two-pass reconstruction and to 46.8 HU using our proposed method. The proposed method reduced the processing time by 31% as compared with the two-pass method. CONCLUSIONS: We proposed a MAR method that directly detects metal in the projection domain using DE imaging, which is robust to truncation and superior to that of single-energy imaging. The method requires only a single-pass reconstruction that substantially reduces processing time compared with the standard two-pass metal reduction method.


Subject(s)
Artifacts , Image Processing, Computer-Assisted , Algorithms , Cone-Beam Computed Tomography , Phantoms, Imaging , Radiography
2.
Med Phys ; 48(10): 6375-6387, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34272890

ABSTRACT

PURPOSE: Spectral CT uses energy-dependent measurements that enable material discrimination in addition to reconstruction of structural information. Flat-panel detectors (FPDs) have been widely used in dedicated and interventional systems to deliver high spatial resolution, volumetric cone-beam CT (CBCT) in compact and OR-friendly designs. In this work, we derive a model-based method that facilitates high-resolution material decomposition in a spectral CBCT system equipped with a prototype dual-layer FPD. Through high-fidelity modeling of multilayer detector, we seek to avoid resolution loss that is present in more traditional processing and decomposition approaches. METHOD: A physical model for spectral measurements in dual-layer flat-panel CBCT is developed including layer-dependent differences in system geometry, spectral sensitivities, and detector blur (e.g., due to varied scintillator thicknesses). This forward model is integrated into a model-based material decomposition (MBMD) method based on minimization of a penalized weighted least-squared (PWLS) objective function. The noise and resolution performance of this approach was compared with traditional projection-domain decomposition (PDD) and image-domain decomposition (IDD) approaches as well as one-step MBMD with lower-fidelity models that use approximated geometry, projection interpolation, or an idealized system geometry without system blur model. Physical studies using high-resolution three-dimensional (3D)-printed water-iodine phantoms were conducted to demonstrate the high-resolution imaging performance of the compared decomposition methods in iodine basis images and synthetic monoenergetic images. RESULTS: Physical experiments demonstrate that the MBMD methods incorporating an accurate geometry model can yield higher spatial resolution iodine basis images and synthetic monoenergetic images than PDD and IDD results at the same noise level. MBMD with blur modeling can further improve the spatial-resolution compared with the decomposition results obtained with IDD, PDD, and MBMD methods with lower-fidelity models. Using the MBMD without or with blur model can increase the absolute modulation at 1.75 lp/mm by 10% and 22% compared with IDD at the same noise level. CONCLUSION: The proposed model-based material decomposition method for a dual-layer flat-panel CBCT system has demonstrated an ability to extend high-resolution performance through sophisticated detector modeling including the layer-dependent blur. The proposed work has the potential to not only facilitate high-resolution spectral CT in interventional and dedicated CBCT systems, but may also provide the opportunity to evaluate different flat-panel design trade-offs including multilayer FPDs with mismatched geometries, scintillator thicknesses, and spectral sensitivities.


Subject(s)
Spiral Cone-Beam Computed Tomography , Cone-Beam Computed Tomography , Least-Squares Analysis , Models, Theoretical , Phantoms, Imaging
3.
Article in English | MEDLINE | ID: mdl-33163986

ABSTRACT

In this work we compare a novel model-based material decomposition (MBMD) approach against a standard approach in high-resolution spectral CT using multi-layer flat-panel detectors. Physical experiments were conducted using a prototype dual-layer detector and a custom high-resolution iodine-enhanced line-pair phantom. Reconstructions were performed using three methods: traditional filtered back-projection (FBP) followed by image-domain decomposition, idealized MBMD with no blur modeling (iMBMD), and MBMD with system blur modeling (bMBMD). We find that both MBMD methods yielded higher resolution decompositions with lower noise than the FBP method, and that bMBMD further improves spatial resolution over iMBMD due to the additional blur modeling. These results demonstrate the advantages of MBMD in resolution performance and noise control over traditional methods for spectral CT. Model-based material decomposition hence has great potential in high-resolution spectral CT applications.

4.
Article in English | MEDLINE | ID: mdl-33154609

ABSTRACT

In this work, we present a novel model-based material decomposition (MBMD) approach for x-ray CT that includes system blur in the measurement model. Such processing has the potential to extend spatial resolution in material density estimates - particularly in systems where different spectral channels exhibit different spatial resolutions. We illustrate this new approach for a dual-layer detector x-ray CT and compare MBMD algorithms with and without blur in the reconstruction forward model. Both qualitative and quantitative comparisons of performance with and without blur modeling are reported. We find that blur modeling yields images with better recovery of high-resolution structures in an investigation of reconstructed line pairs as well as lower cross-talk bias between material bases that is ordinarily found due to mismatches in spatial resolution between spectral channels. The extended spatial resolution of the material decompositions has potential application in a range of high-resolution clinical tasks and spectral CT systems where spectral channels exhibit different spatial resolutions.

5.
Med Phys ; 47(8): 3332-3343, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32347561

ABSTRACT

PURPOSE: Dual-energy (DE) x-ray imaging has many clinical applications in radiography, fluoroscopy, and CT. This work characterizes a prototype dual-layer (DL) flat-panel detector (FPD) and investigates its DE imaging capabilities for applications in two-dimensional (2D) radiography/fluoroscopy and quantitative three-dimensional (3D) cone-beam CT. Unlike other DE methods like kV switching, a DL FPD obtains DE images from a single exposure, making it robust against patient and system motion. METHODS: The DL FPD consists of a top layer with a 200 µm-thick CsI scintillator coupled to an amorphous silicon (aSi) FPD of 150 µm pixel size and a bottom layer with a 550 µm thick CsI scintillator coupled to an identical aSi FPD. The two layers are separated by a 1-mm Cu filter to increase spectral separation. Images (43 × 43 cm2 active area) can be readout in 2 × 2 binning mode (300 µm pixels) at up to 15 frames per second. Detector performance was first characterized by measuring the MTF, NPS, and DQE for the top and bottom layers. For 2D applications, a qualitative study was conducted using an anthropomorphic thorax phantom containing a porcine heart with barium-filled coronary arteries (similar to iodine). Additionally, fluoroscopic lung tumor tracking was investigated by superimposing a moving tumor phantom on the thorax phantom. Tracking accuracies of single-energy (SE) and DE fluoroscopy were compared against the ground truth motion of the tumor. For 3D quantitative imaging, a phantom containing water, iodine, and calcium inserts was used to evaluate overall DE material decomposition capabilities. Virtual monoenergetic (VM) images ranging from 40 to 100 keV were generated, and the optimal VM image energy which achieved the highest image uniformity and maximum contrast-to-noise ratio (CNR) was determined. RESULTS: The spatial resolution of the top layer was substantially higher than that of the bottom layer (top layer 50% MTF = 2.2 mm-1 , bottom layer = 1.2 mm-1 ). A substantial increase in NNPS and reduction in DQE were observed for the bottom layer mainly due to photon loss within the top layer and Cu filter. For 2D radiographic and fluoroscopic applications, the DL FPD was capable of generating high-quality material-specific images separating soft tissue from bone and barium. For lung tumor tracking, DE fluoroscopy yielded more accurate results than SE fluoroscopy, with an average reduction in the root mean square error (RMSE) of over 10×. For the DE-CBCT studies, accurate basis material decompositions were obtained. The estimated material densities were 294.68  ±  17.41 and 92.14  ±  15.61 mg/ml for the 300 and 100 mg/ml calcium inserts, respectively, and 8.93  ±  1.45, 4.72  ±  1.44, and 2.11  ±  1.32 mg/ml for the 10, 5, and 2 mg/ml iodine inserts, respectively, with an average error of less than 5%. The optimal VM image energy was found to be 60 keV. CONCLUSIONS: We characterized a prototype DL FPD and demonstrated its ability to perform accurate single-exposure DE radiography/fluoroscopy and DE-CBCT. The merits of the DL detector approach include superior spatial and temporal registration between its constituent images, and less complicated acquisition sequences.


Subject(s)
Cone-Beam Computed Tomography , Imaging, Three-Dimensional , Animals , Fluoroscopy , Humans , Phantoms, Imaging , Radiography , Swine
6.
Article in English | MEDLINE | ID: mdl-34248249

ABSTRACT

Cone-beam CT (CBCT) is widely used in diagnostic imaging and image-guided procedures, leading to an increasing need for advanced CBCT techniques, such as dual energy (DE) imaging. Previous studies have shown that DE-CBCT can perform quantitative material decomposition, including quantification of contrast agents, electron density, and virtual monoenergetic images. Currently, most CBCT systems perform DE imaging using a kVp switching technique. However, the disadvantages of this method are spatial and temporal misregistration as well as total scan time increase, leading to errors in the material decomposition. DE-CBCT with a dual layer flat panel detector potentially overcomes these limitations by acquiring the dual energy images simultaneously. In this work, we investigate the DE imaging performance of a prototype dual layer detector by evaluating its material decomposition capability and comparing its performance to that of the kVp switching method. Two sets of x-ray spectra were used for kVp switching: 80/120 kVp and 80/120 kVp + 1 mm Cu filtration. Our results show the dual layer detector outperforms kVp switching at 80/120 kVp with matched dose. The performance of kVp switching was better by adding 1 mm copper filtration to the high energy images (80/120 kVp + 1 mm Cu), though the dual layer detector still provided comparable performance for material decomposition tasks. Overall, both the dual layer detector and kVp switching methods provided quantitative material decomposition images in DE-CBCT, with the dual layer detector having additional potential advantages.

SELECTION OF CITATIONS
SEARCH DETAIL
...