Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 48(10): 6375-6387, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34272890

ABSTRACT

PURPOSE: Spectral CT uses energy-dependent measurements that enable material discrimination in addition to reconstruction of structural information. Flat-panel detectors (FPDs) have been widely used in dedicated and interventional systems to deliver high spatial resolution, volumetric cone-beam CT (CBCT) in compact and OR-friendly designs. In this work, we derive a model-based method that facilitates high-resolution material decomposition in a spectral CBCT system equipped with a prototype dual-layer FPD. Through high-fidelity modeling of multilayer detector, we seek to avoid resolution loss that is present in more traditional processing and decomposition approaches. METHOD: A physical model for spectral measurements in dual-layer flat-panel CBCT is developed including layer-dependent differences in system geometry, spectral sensitivities, and detector blur (e.g., due to varied scintillator thicknesses). This forward model is integrated into a model-based material decomposition (MBMD) method based on minimization of a penalized weighted least-squared (PWLS) objective function. The noise and resolution performance of this approach was compared with traditional projection-domain decomposition (PDD) and image-domain decomposition (IDD) approaches as well as one-step MBMD with lower-fidelity models that use approximated geometry, projection interpolation, or an idealized system geometry without system blur model. Physical studies using high-resolution three-dimensional (3D)-printed water-iodine phantoms were conducted to demonstrate the high-resolution imaging performance of the compared decomposition methods in iodine basis images and synthetic monoenergetic images. RESULTS: Physical experiments demonstrate that the MBMD methods incorporating an accurate geometry model can yield higher spatial resolution iodine basis images and synthetic monoenergetic images than PDD and IDD results at the same noise level. MBMD with blur modeling can further improve the spatial-resolution compared with the decomposition results obtained with IDD, PDD, and MBMD methods with lower-fidelity models. Using the MBMD without or with blur model can increase the absolute modulation at 1.75 lp/mm by 10% and 22% compared with IDD at the same noise level. CONCLUSION: The proposed model-based material decomposition method for a dual-layer flat-panel CBCT system has demonstrated an ability to extend high-resolution performance through sophisticated detector modeling including the layer-dependent blur. The proposed work has the potential to not only facilitate high-resolution spectral CT in interventional and dedicated CBCT systems, but may also provide the opportunity to evaluate different flat-panel design trade-offs including multilayer FPDs with mismatched geometries, scintillator thicknesses, and spectral sensitivities.


Subject(s)
Spiral Cone-Beam Computed Tomography , Cone-Beam Computed Tomography , Least-Squares Analysis , Models, Theoretical , Phantoms, Imaging
2.
Article in English | MEDLINE | ID: mdl-33163986

ABSTRACT

In this work we compare a novel model-based material decomposition (MBMD) approach against a standard approach in high-resolution spectral CT using multi-layer flat-panel detectors. Physical experiments were conducted using a prototype dual-layer detector and a custom high-resolution iodine-enhanced line-pair phantom. Reconstructions were performed using three methods: traditional filtered back-projection (FBP) followed by image-domain decomposition, idealized MBMD with no blur modeling (iMBMD), and MBMD with system blur modeling (bMBMD). We find that both MBMD methods yielded higher resolution decompositions with lower noise than the FBP method, and that bMBMD further improves spatial resolution over iMBMD due to the additional blur modeling. These results demonstrate the advantages of MBMD in resolution performance and noise control over traditional methods for spectral CT. Model-based material decomposition hence has great potential in high-resolution spectral CT applications.

3.
Article in English | MEDLINE | ID: mdl-33154609

ABSTRACT

In this work, we present a novel model-based material decomposition (MBMD) approach for x-ray CT that includes system blur in the measurement model. Such processing has the potential to extend spatial resolution in material density estimates - particularly in systems where different spectral channels exhibit different spatial resolutions. We illustrate this new approach for a dual-layer detector x-ray CT and compare MBMD algorithms with and without blur in the reconstruction forward model. Both qualitative and quantitative comparisons of performance with and without blur modeling are reported. We find that blur modeling yields images with better recovery of high-resolution structures in an investigation of reconstructed line pairs as well as lower cross-talk bias between material bases that is ordinarily found due to mismatches in spatial resolution between spectral channels. The extended spatial resolution of the material decompositions has potential application in a range of high-resolution clinical tasks and spectral CT systems where spectral channels exhibit different spatial resolutions.

4.
Article in English | MEDLINE | ID: mdl-34248249

ABSTRACT

Cone-beam CT (CBCT) is widely used in diagnostic imaging and image-guided procedures, leading to an increasing need for advanced CBCT techniques, such as dual energy (DE) imaging. Previous studies have shown that DE-CBCT can perform quantitative material decomposition, including quantification of contrast agents, electron density, and virtual monoenergetic images. Currently, most CBCT systems perform DE imaging using a kVp switching technique. However, the disadvantages of this method are spatial and temporal misregistration as well as total scan time increase, leading to errors in the material decomposition. DE-CBCT with a dual layer flat panel detector potentially overcomes these limitations by acquiring the dual energy images simultaneously. In this work, we investigate the DE imaging performance of a prototype dual layer detector by evaluating its material decomposition capability and comparing its performance to that of the kVp switching method. Two sets of x-ray spectra were used for kVp switching: 80/120 kVp and 80/120 kVp + 1 mm Cu filtration. Our results show the dual layer detector outperforms kVp switching at 80/120 kVp with matched dose. The performance of kVp switching was better by adding 1 mm copper filtration to the high energy images (80/120 kVp + 1 mm Cu), though the dual layer detector still provided comparable performance for material decomposition tasks. Overall, both the dual layer detector and kVp switching methods provided quantitative material decomposition images in DE-CBCT, with the dual layer detector having additional potential advantages.

SELECTION OF CITATIONS
SEARCH DETAIL
...