Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 272(5263): 854-6, 1996 May 10.
Article in English | MEDLINE | ID: mdl-8629019

ABSTRACT

The nephelometer experiment carried on the Galileo probe was designed to measure the jovian cloud structure and its microphysical characteristics from entry down to atmospheric pressure levels greater than 10 bars. Before this mission there was no direct evidence for the existence of the clouds below the uppermost cloud layer, and only theoretical models derived from remote sensing observations were available for describing such clouds. Only one significant cloud structure with a base at about 1.55 bars was found along the probe descent trajectory below an ambient pressure of about 0.4 bar, although many indications of small densities of particle concentrations were noted during much of the descent.


Subject(s)
Atmosphere , Extraterrestrial Environment , Jupiter , Quaternary Ammonium Compounds/analysis , Water/analysis , Nephelometry and Turbidimetry , Pressure , Sulfur/analysis
2.
Science ; 207(4429): 407-10, 1980 Jan 25.
Article in English | MEDLINE | ID: mdl-17833549

ABSTRACT

The Pioneer Saturn vector helium magnetometer has detected a bow shock and magnetopause at Saturn and has provided an accurate characterization of the planetary field. The equatorial surface field is 0.20 gauss, a factor of 3 to 5 times smaller than anticipated on the basis of attempted scalings from Earth and Jupiter. The tilt angle between the magnetic dipole axis and Saturn's rotation axis is < 1 degrees , a surprisingly small value. Spherical harmonic analysis of the measurements shows that the ratio of quadrupole to dipole moments is < 10 percent, indicating that the field is more uniform than those of the Earth or Jupiter and consistent with Saturn having a relatively small core. The field in the outer magnetosphere shows systematic departures from the dipole field, principally a compression of the field near noon and an equatorial orientation associated with a current sheet near dawn. A hydromagnetic wake resulting from the interaction of Titan with the rotating magnetosphere appears to have been observed.

3.
Science ; 188(4187): 451-5, 1975 May 02.
Article in English | MEDLINE | ID: mdl-17734359

ABSTRACT

The Pioneer 11 vector helium magnetometer provided precise, contititious measurements of the magnetic fields in interplanetary space, inside Jupiter's magnetosphere, and in the near vicinity of Jupiter. As with the Pioneer 10 data, evidence was seen of the dynanmic interaction of Jupiter with the solar wind which leads to a variety of phenomena (bow shock, upstream waves, nonlinear magnetosheath impulses) and to changes in the dimension of the dayside magnetosphere by as much as a factor of 2. The magnetosphere clearly appears to be blunt, not disk-shaped, with a well-defined outer boundary. In the outer magnetosphere, the magnetic field is irregular but exhibits a persistent southward component indicative of a closed magnetosphere. The data contain the first clear evidence in the dayside magnetosphere of the current sheet, apparently associated with centrifugal forces, that was a donminatnt feature of the outbound Pionieer 10 data. A modest westward spiraling of the field was again evident inbound but not outbound at higher latitudes and nearer the Sun-Jupiter direction. Measurements near periapsis, which were nearer the planet and provide better latitude and longitude coverage than Pioneer 10, have revealed a 5 percent discrepancy with the Pioneer 10 offset dipole mnodel (D(2)). A revised offset dipole (6-parameter fit) is presented as well as the results of a spherical harmonic analysis (23 parameters) consisting of an interior dipole, quadrupole, and octopole and an external dipole and quadrupole. The dipole moment and the composite field appear moderately larger than inferred from Pioneer 10. Maximum surface fields of 14 and 11 gauss in the northern and southern hemispheres are inferred. Jupiter's planetary field is found to be slightly more irregular than that of Earth.

4.
Science ; 183(4130): 1194-7, 1974 Mar 22.
Article in English | MEDLINE | ID: mdl-17789221

ABSTRACT

High-frequency (5 to 40 millihertz) induced lunar magnetic fields, observed at the Apollo 15 site near the southeastern boundary of Mare Imbrium and the southwestern boundary of Mare Serenitatis, show a strong tendency toward linear polarization in a direction radial to the Imbrium basin and circumferential to the Serenitatis basin, a property that could be indicative of a possible regional influence on the induction.

5.
Science ; 183(4122): 305-6, 1974 Jan 25.
Article in English | MEDLINE | ID: mdl-17821088

ABSTRACT

Jupiter's magnetic field and its interaction with the magnetized solar wind were observed with the Pioneer 10 vector helium magnetometer. The magnetic dipole is directed opposite to that of the earth with a moment of 4.0 gauss R(J)(3) (R(J), Jupiter radius), and an inclination of 15 degrees lying in a system III meridian of 230 degrees . The dipole is offset about 0.1 R(J) north of the equatorial plane and about 0.2 R(J) toward longitude 170 degrees . There is severe stretching of the planetary field parallel to the equator throughout the outer magnetosphere, accompanied by a systematic departure from meridian planes. The field configuration implies substantial plasma effects inside the magnetosphere, such as thermal pressure, centrifugal forces, and differential rotation. As at the earth, the outer boundary is thin, nor diffuse, and there is a detached bow shock.

6.
Science ; 172(3980): 256-8, 1971 Apr 16.
Article in English | MEDLINE | ID: mdl-17847243

ABSTRACT

A comparison has been made of the interplanetary magnetic field as measured both by Apollo 12 on the lunar surface and by Explorer 35 in orbit around the moon. Two examples are given, one of a step change in the field vector and another of a sinusoidally varying field. A large response measured on the surface is attributed to confinement of the induced field lines between the streaming solar plasma and the high-conductivity interior. A steep bulk electrical conductivity gradient in the lunar crust is implied, with a confining layer roughly 100 kilometers deep.

7.
Science ; 162(3856): 898-901, 1968 Nov 22.
Article in English | MEDLINE | ID: mdl-17769077

ABSTRACT

Coordinated observations of the earth's bow shock were made as Vela 3A and Explorer 33 passed within 6 earth radii of each other. Elapsed time measurements of shock motion give directly determined velocities in the range 1 to 10 kilometers per second and establish the existence of two regions, one of large amplitude magnetic "shock" oscillations and another of smaller, sunward, upstream oscillations. Each region is as thick as 1 earth radius, or more.

8.
Science ; 158(3804): 1040-2, 1967 Nov 24.
Article in English | MEDLINE | ID: mdl-17811617

ABSTRACT

Preliminary Ames-magnetometer data from Explorer 35, the lunar orbiter, show no evidence of a lunar bow shock. However, an increase of the magnetic field by about 1.5 gamma (over the interplanetary value) is evident on Moon's dark side, as well as dips in field strength at the limbs. Interpretation of these spatial variations in the field as deriving from plasma diamagnetism is consistent with a plasma void on the dark side, and steady-state (B = 0) magnetic transparency of Moon.

SELECTION OF CITATIONS
SEARCH DETAIL
...