Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Clin Pharmacokinet ; 43(5): 311-27, 2004.
Article in English | MEDLINE | ID: mdl-15080764

ABSTRACT

Thalidomide is a racemic glutamic acid derivative approved in the US for erythema nodosum leprosum, a complication of leprosy. In addition, its use in various inflammatory and oncologic conditions is being investigated. Thalidomide interconverts between the (R)- and (S)-enantiomers in plasma, with protein binding of 55% and 65%, respectively. More than 90% of the absorbed drug is excreted in the urine and faeces within 48 hours. Thalidomide is minimally metabolised by the liver, but is spontaneously hydrolysed into numerous renally excreted products. After a single oral dose of thalidomide 200 mg (as the US-approved capsule formulation) in healthy volunteers, absorption is slow and extensive, resulting in a peak concentration (C(max)) of 1-2 mg/L at 3-4 hours after administration, absorption lag time of 30 minutes, total exposure (AUC( infinity )) of 18 mg. h/L, apparent elimination half-life of 6 hours and apparent systemic clearance of 10 L/h. Thalidomide pharmacokinetics are best described by a one-compartment model with first-order absorption and elimination. Because of the low solubility of the drug in the gastrointestinal tract, thalidomide exhibits absorption rate-limited pharmacokinetics (the 'flip-flop' phenomenon), with its elimination rate being faster than its absorption rate. The apparent elimination half-life of 6 hours therefore represents absorption, not elimination. The 'true' apparent volume of distribution was estimated to be 16L by use of the faster elimination-rate half-life. Multiple doses of thalidomide 200 mg/day over 21 days cause no change in the pharmacokinetics, with a steady-state C(max) (C(ss)(max)) of 1.2 mg/L. Simulation of 400 and 800 mg/day also shows no accumulation, with C(ss)(max) of 3.5 and 6.0 mg/L, respectively. Multiple-dose studies in cancer patients show pharmacokinetics comparable with those in healthy populations at similar dosages. Thalidomide exhibits a dose-proportional increase in AUC at doses from 50 to 400 mg. Because of the low solubility of thalidomide, C(max) is less than proportional to dose, and t(max) is prolonged with increasing dose. Age, sex and smoking have no effect on the pharmacokinetics of thalidomide, and the effect of food is minimal. Thalidomide does not alter the pharmacokinetics of oral contraceptives, and is also unlikely to interact with warfarin and grapefruit juice. Since thalidomide is mainly hydrolysed and passively excreted, its pharmacokinetics are not expected to change in patients with impaired liver or kidney function.


Subject(s)
Anti-Inflammatory Agents/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Thalidomide/pharmacokinetics , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Area Under Curve , Half-Life , Humans , Kidney Diseases/physiopathology , Liver Diseases/physiopathology , Stereoisomerism , Thalidomide/administration & dosage , Thalidomide/chemistry
2.
s.l; s.n; 2004. 17 p. ilus, tab, graf.
Non-conventional in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1242666

ABSTRACT

Thalidomide is a racemic glutamic acid derivative approved in the US for erythema nodosum leprosum, a complication of leprosy. In addition, its use in various inflammatory and oncologic conditions in being investigated. Thalidomide interconverts between the (R)- and (S)-enantiomers in plasma, with protein binding of 55% and 65%, respectively. More than 90% of the absorbed drug is excreted in the urine and faeces within 48 hours. Thalidomide is minimally metabolised by the liver, but is spontaneously hydrolysed into numerous renally excreted products. After a single oral dose of thalidomide 200mg (as the US-approved capsule formulation) in healthy volunteers, absorption is slow and extensive, resulting in a peak concentration (Cmax) of 1-2mg/L at 3-4 hours after administration, absorption lag time of 30 minutes, total exposure (AUCoo) of 18mg - h/L, apparent elimination half-life of 6 hours and apparent systemic clearence of 10 L/H. Thalidomide pharmacokinetics are best described by a one-comportment model with first-order absorption and elimination. Because of the low solubility of the drug in the gastrointestinal tract, thalidomide exhibits absorption rate-limited pharmacolinetics (the 'flip-flop' phenomenon), with its elimination rate being faster than in absorption rate. The apparent elimination half-life of 6 hours therefore represents absorption, not elimination. The 'true' apparent volume of distribution was estimated to be 16L by use of the faster elimination-rate half-life. Multiple doses of thalidomide 200 mg/day over 21 days cause no change in the pharmacokinetics, with a steady-state Cmax (Cssmax) of 1.2 mg/L. Simulation of 400 and 800 mg/day also shows no accululation, with Css of 3.5 and 6.0 mg/L, respectively. Multiple-dose studies in cancer patients show pharmacokinetics comparable with those in healthy populations at similar dosages. Thalidomide exhibits a dose-proportional increase in AUC at doses from 50 to 400mg. Because of the low solubility of thalidomide Cmax is less than proportional to dose, and tmax is prolonged with increasing dose. Age, sex and smoking have no effect on the pharmacokinetics of thalidomide, and the effect of food is minimal. Thalidomide does not alter the pharmacokinetics of oral contraceptives, and is also unlikely to interact with warfarin and grapefruit juice. Since thalidomide is mainly hydrolysed and passively excreted, its pharmacokonetics are not expected to change in patients with impaired liver...


Subject(s)
Humans , Thalidomide , Thalidomide/administration & dosage , Thalidomide/pharmacokinetics , Thalidomide/history , Thalidomide/isolation & purification , Thalidomide/metabolism , Thalidomide/standards , Thalidomide/chemical synthesis , Thalidomide/toxicity , Thalidomide/therapeutic use , Administration, Oral , Cimetidine/antagonists & inhibitors , Diltiazem/antagonists & inhibitors , Erythema Nodosum/etiology , Phenobarbital/antagonists & inhibitors , Drug Interactions/physiology , Rifampin/antagonists & inhibitors , Feline Acquired Immunodeficiency Syndrome/therapy , Warfarin/antagonists & inhibitors
3.
Clin Pharmacokinet ; 42(12): 997-1022, 2003.
Article in English | MEDLINE | ID: mdl-12959633

ABSTRACT

Four elements are crucial to successful pharmacokinetic-pharmacodynamic (PK/PD) modelling and simulation for efficient and effective rational drug development: (i) mechanism-based biomarker selection and correlation to clinical endpoints; (ii) quantification of drug and/or metabolites in biological fluids under good laboratory practices (GLP); (iii) GLP-like biomarker method validation and measurements and; (iv) mechanism-based PK/PD modelling and validation. Biomarkers can provide great predictive value in early drug development if they reflect the mechanism of action for the intervention even if they do not become surrogate endpoints. PK/PD modelling and simulation can play a critical role in this process. Data from genomic and proteomics differentiating healthy versus disease states lead to biomarker discovery and identification. Multiple genes control complex diseases via hosts of gene products in biometabolic pathways and cell/organ signal transduction. Pilot exploratory studies should be conducted to identify pivotal biomarkers to be used for predictive clinical assessment of disease progression and the effect of drug intervention. Most biomarkers are endogenous macromolecules, which could be measured in biological fluids. Many exist in heterogeneous forms with varying activity and immunoreactivity, posting challenges for bioanalysis. Reliable and selective assays could be validated under a GLP-like environment for quantitative methods. While the need for consistent reference standards and quality control monitoring during sample analysis for biomarker assays are similar to that of drug molecules, many biomarkers have special requirements for sample collection that demand a well coordinated team management. Bioanalytical methods should be validated to meet study objectives at various drug development stages, and possess adequate performance to quantify biochemical responses specific to the target disease progression and drug intervention. Protocol design to produce sufficient data for PK/PD modelling would be more complex than that of PK. Knowledge of mechanism from discovery and preclinical studies are helpful for planning clinical study designs in cascade, sequential, crossover or replicate mode. The appropriate combination of biomarker identification and selection, bioanalytical methods development and validation for drugs and biomarkers, and mechanism-based PK/PD models for fitting data and predicting future clinical endpoints/outcomes provide powerful insights and guidance for effective and efficient rational drug development, toward safe and efficacious medicine for individual patients.


Subject(s)
Biomarkers , Models, Biological , Pharmacokinetics , Pharmacology , Biomarkers/analysis , Clinical Trials as Topic , Drug-Related Side Effects and Adverse Reactions , Endpoint Determination , Humans , Pharmaceutical Preparations/metabolism , Reproducibility of Results
4.
J Clin Pharmacol ; 43(4): 329-41, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12723454

ABSTRACT

Biomarkers of disease play an important role in medicine and have begun to assume a greater role in drug discovery and development. The challenge for biomarkers is to allow earlier, more robust drug safety and efficacy measurements. Their role in drug development will continue to grow for the foreseeable future. For biomarkers to assume their rightful role, greater understanding of the mechanism of disease progression and therapeutic intervention is needed. In addition, greater understanding of the requirements for biomarker selection and validation, biomarker assay method validation and application, and clinical endpoint validation and application is needed. Biomarkers need to be taken into account while the therapeutic target is still being identified and the concept is being formulated. Biomarkers need to be incorporated into a continuous cycle that takes what is learned from the discovery and development of one series of biomarkers and translates it into the next series of biomarkers. Optimum biomarker development and application will require a team approach because of the multifaceted nature of biomarker selection, validation, and application, using such techniques as pharmacoepidemiology, pharmacogenetics, pharmacogenomics, and functional proteomics; bioanalytical method development and validation; disease process and therapeutic intervention assessments; and pharmacokinetic/pharmacodynamic modeling and simulation to improve and refine drug development. The potential for biomarkers in medicine and drug development will be limited by the least effective component of the processes. The team approach will minimize the potential for the least effective component to be fatal to the rest of the process. As scientific/regulatory foundations for biomarkers in medicine and drug development begin to be established, successes and applications will need to be effectively communicated with all of the stakeholders, including not only internal and external drug developers and regulators but also the medical community, to ensure that biomarkers are totally integrated into drug discovery and development as well as the practice of medicine.


Subject(s)
Biomarkers , Drug Delivery Systems/trends , Drug Design , Marketing/trends , Biomarkers/analysis , Drug Therapy , Endpoint Determination , Humans , Models, Biological , Pharmaceutical Preparations , Pharmacokinetics , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...