Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 130(12): 123401, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37027886

ABSTRACT

We experimentally study a gas of quantum degenerate ^{87}Rb atoms throughout the full dimensional crossover, from a one-dimensional (1D) system exhibiting phase fluctuations consistent with 1D theory to a three-dimensional (3D) phase-coherent system, thereby smoothly interpolating between these distinct, well-understood regimes. Using a hybrid trapping architecture combining an atom chip with a printed circuit board, we continuously adjust the system's dimensionality over a wide range while measuring the phase fluctuations through the power spectrum of density ripples in time-of-flight expansion. Our measurements confirm that the chemical potential µ controls the departure of the system from 3D and that the fluctuations are dependent on both µ and the temperature T. Through a rigorous study we quantitatively observe how inside the crossover the dependence on T gradually disappears as the system becomes 3D. Throughout the entire crossover the fluctuations are shown to be determined by the relative occupation of 1D axial collective excitations.

2.
Phys Rev Lett ; 123(13): 130401, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31697557

ABSTRACT

An integrable model subjected to a periodic driving gives rise generally to a nonintegrable Floquet Hamiltonian. Here we show that the Floquet Hamiltonian of the integrable Lieb-Liniger model in the presence of a linear potential with a periodic time-dependent strength is instead integrable and its quasienergies can be determined using the Bethe ansatz approach. We discuss various aspects of the dynamics of the system at stroboscopic times and we also propose a possible experimental realization of the periodically driven tilting in terms of a shaken rotated ring potential.

SELECTION OF CITATIONS
SEARCH DETAIL